if(mode & 0x0C){}是什么意思

时间: 2024-04-13 10:25:27 浏览: 28
`if(mode & 0x0C){}`是一段C语言代码中的条件语句。在这个条件语句中,`mode`是一个变量(或表达式)的值,`&`是按位与运算符,`0x0C`是一个十六进制数。 在C语言中,`&`按位与运算符用于对两个操作数的每个对应位进行逻辑与操作。`0x0C`的二进制表示为 `00001100`,它的每个位代表一个条件。如果`mode`的对应位与`0x0C`的对应位都为1,则条件为真(非零),执行相关的代码块。 换句话说,`if(mode & 0x0C){}`的意思是,如果`mode`的第2位和第3位都为1,则执行条件语句中的代码块。具体执行什么代码块需要根据实际情况来确定。
相关问题

#include "led.h" u8 seg_tab[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_SetBits(GPIOA,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOE, &GPIO_InitStructure); GPIO_SetBits(GPIOE,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8); } void Display(u8 index) { DX0 = seg_tab[index]&0x01; DX1 = (seg_tab[index]>>1)&0x01; DX2 = (seg_tab[index]>>2)&0x01; DX3 = (seg_tab[index]>>3)&0x01; DX4 = (seg_tab[index]>>4)&0x01; DX5 = (seg_tab[index]>>5)&0x01; DX6 = (seg_tab[index]>>6)&0x01; DX7 = (seg_tab[index]>>7)&0x01; }

好的,以下是修改后的key.c文件,请替换您原来的代码: ``` #include "led.h" #include "key.h" u8 seg_tab[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; u8 key_value = 0; void KEY_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOE, &GPIO_InitStructure); } u8 KEY_Scan(void) { u8 key = 0; if (KEY1 == 0) { key = 1; } else if (KEY2 == 0) { key = 2; } else if (KEY3 == 0) { key = 3; } else if (KEY4 == 0) { key = 4; } else if (KEY5 == 0) { key = 5; } else if (KEY6 == 0) { key = 6; } else if (KEY7 == 0) { key = 7; } else if (KEY8 == 0) { key = 8; } return key; } void Display(u8 index) { DX0 = seg_tab[index % 10] & 0x01; DX1 = (seg_tab[index % 10] >> 1) & 0x01; DX2 = (seg_tab[index % 10] >> 2) & 0x01; DX3 = (seg_tab[index % 10] >> 3) & 0x01; DX4 = (seg_tab[index / 10] & 0x01); DX5 = (seg_tab[index / 10] >> 1) & 0x01; DX6 = (seg_tab[index / 10] >> 2) & 0x01; DX7 = (seg_tab[index / 10] >> 3) & 0x01; } ``` 请注意,我在原有代码的基础上添加了KEY_Init()和KEY_Scan()函数,用于初始化和扫描键盘输入。同时,在Display()函数中,我对数码管的显示进行了修改,使其能够满足题目所要求的各种显示方式。

int SEG_Code[10]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6}; unsigned int aa; sbit SDA=P1^0; sbit CLK=P1^1; unsigned int miao; void SMG_JT_Init(unsigned int miao) {     unsigned char da,i;     da=SEG_Code[0];     for(i=0;i<8;i++)     {      CLK=0;      SDA=da&0x01;      CLK=1;      da=da>>1;     }     da=SEG_Code[miao];     for(i=0;i<8;i++)     {      CLK=0;      SDA=da&0x01;      CLK=1;      da=da>>1;     }       }                                       void main() {     System_Init();     P1_Mode_OUT_PP(0xf3);     Timer0Init();     while(1)     {         if(aa==1)         {             aa=0;             SMG_JT_Init(miao);           }           } } void Timer0_Poutine() interrupt 1 {     static unsigned int T0Count;     TL0=15536%256;     TH0=15536/256;     T0Count++;     if(T0Count>=40)     {         T0Count=0;         miao++;         aa=1;         if(miao==10)         {             miao=0;         }     } }给每一行代码写上注释

以下是每一行代码的注释: ```C int SEG_Code[10]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6}; // 数码管显示0~9的编码,用于后面的显示 unsigned int aa; // 定义一个标志位 sbit SDA=P1^0; // 定义单片机的SDA管脚 sbit CLK=P1^1; // 定义单片机的CLK管脚 unsigned int miao; // 定义秒数 void SMG_JT_Init(unsigned int miao) { // 数码管显示函数 unsigned char da,i; // 定义变量da和i da=SEG_Code[0]; // 将da初始化为0显示的编码 for(i=0;i<8;i++) { // 循环8次,控制8位数码管的显示 CLK=0; // CLK管脚置0 SDA=da&0x01; // 将da的最低位(即二进制的个位)赋给SDA CLK=1; // CLK管脚置1 da=da>>1; // 将da右移一位,相当于除以2 } da=SEG_Code[miao]; // 将da设置为当前秒数对应的编码 for(i=0;i<8;i++) { // 循环8次,控制8位数码管的显示 CLK=0; // CLK管脚置0 SDA=da&0x01; // 将da的最低位(即二进制的个位)赋给SDA CLK=1; // CLK管脚置1 da=da>>1; // 将da右移一位,相当于除以2 } } void main() { System_Init(); // 系统初始化 P1_Mode_OUT_PP(0xf3); // 将P1.0和P1.1设置为输出模式 Timer0Init(); // 定时器初始化 while(1) { // 进入循环 if(aa==1) { // 如果标志位为1 aa=0; // 将标志位清零 SMG_JT_Init(miao); // 进行数码管显示 }   } } void Timer0_Poutine() interrupt 1 { // 定时器中断函数 static unsigned int T0Count; // 定义静态变量T0Count TL0=15536%256; // 设置定时器0的低8位 TH0=15536/256; // 设置定时器0的高8位 T0Count++; // T0Count自增 if(T0Count>=40) { // 每1秒钟执行一次下面的语句 T0Count=0; // 将T0Count清零 miao++; // 秒数自增 aa=1; // 设置标志位为1 if(miao==10) { // 如果秒数达到10,则将秒数清零 miao=0; } } } ```

相关推荐

以下是实现独立按键对LED流水灯显示的控制的C语言代码: #include <reg51.h> #define LED P0 sbit KEY1 = P1^0; sbit KEY2 = P1^1; sbit KEY3 = P1^2; void delay(unsigned int time) { unsigned int i, j; for(i = 0; i < time; i++) for(j = 0; j < 125; j++); } void main() { unsigned char mode = 0; unsigned char flag = 0; unsigned char led = 0x01; while(1) { switch(mode) { case 0: LED = led; delay(100); led <<= 1; if(led == 0x00) led = 0x01; if(KEY1 == 0) { mode = 1; flag = 0; } if(KEY2 == 0) { mode = 2; flag = 0; } if(KEY3 == 0) { mode = 3; flag = 0; } break; case 1: LED = led; delay(100); led >>= 1; if(led == 0x00) led = 0x80; if(KEY1 == 0) { mode = 0; flag = 0; } if(KEY2 == 0) { mode = 2; flag = 0; } if(KEY3 == 0) { if(flag == 0) { flag = 1; } else { mode = 0; flag = 0; } } break; case 2: LED = led; delay(100); if(flag == 0) { led <<= 1; if(led == 0x00) led = 0x01; if(led == 0x80) flag = 1; } else { led >>= 1; if(led == 0x00) led = 0x80; if(led == 0x01) flag = 0; } if(KEY1 == 0) { mode = 1; flag = 0; } if(KEY2 == 0) { mode = 0; flag = 0; } if(KEY3 == 0) { if(flag == 0) { flag = 1; } else { mode = 0; flag = 0; } } break; case 3: LED = led; delay(100); if(flag == 0) { led <<= 1; if(led == 0x00) led = 0x01; if(led == 0x80) flag = 1; } else { led >>= 1; if(led == 0x00) led = 0x80; if(led == 0x01) flag = 0; } if(KEY1 == 0) { mode = 1; flag = 0; } if(KEY2 == 0) { mode = 2; flag = 0; } if(KEY3 == 0) { mode = 0; flag = 0; } break; } } } 这段代码实现了以下功能: 使用3个独立按键控制由8个LED组成的流水灯的显示。 通过独立按键控制流水灯实现4种不同样式的循环显示。 当流水灯显示某一种样式时,可通过独立按键实现暂停和重新开始显示。 相邻两个LED灯点亮的时间间隔使用软件延时的方法实现,延时时间为100毫秒。每一行什么意思

帮我完善以下代码 void Check_Key(void) { unsigned char row, col; unsigned int KEY_DOUT,tmp1, tmp2; tmp1 = 0x0800; for(row=0; row<4; row++) //行扫描 { KEY_DOUT = 0X0f00; //输出全为1 KEY_DOUT-= tmp1; //依次输出一个为0 GPIOD->ODR=((GPIOD->ODR&0xf0ff)|KEY_DOUT); tmp1 >>=1; if((GPIO_ReadInputData(GPIOD)&0xf000)<0xf000) //if((KEY_DIN & 0xF0) < 0xF0) //P2输入是否有一位为0 { tmp2 = 0x1000; //用于检测出哪一位为0 for(col=0; col<4; col++) //列扫描 { if(0x00 == (GPIO_ReadInputData(GPIOD) & tmp2)) //找到等于0的列 { key_val = key_Map[row*4 + col];//获取键值 return; //退出循环 } tmp2 <<= 1; //右移1位 } } } } void Key_Event(void) { unsigned int tmp; GPIOD->ODR=((GPIOD->ODR&0xf0ff)|0x0000); tmp = GPIO_ReadInputData(GPIOD); if ((0x00 == key_Pressed) && ((tmp & 0xF000) < 0xF000)) //如果有键按下 { key_Pressed = 1; //按键按下标识位置位 delay_ms(10); //延时去抖 Check_Key(); //获取键 // key_flag = 1; //按键标识置位 } else if ((key_Pressed == 1)&&((tmp & 0xf000) == 0xF000)) //如果按键释放 { key_Pressed = 0; //清除标识位 key_flag = 1; //按键标识位置位 } else { delay_ms(1); } } u8 KEY_Scan(u8 mode) { static u8 key_up=1;//按键按松开标志 if(mode)key_up=1; //支持连按 if(key_up&&(KEY0==0||KEY1==0||WK_UP==1)) { delay_ms(10);//去抖动 key_up=0; if(KEY0==0)return KEY0_PRES; else if(KEY1==0)return KEY1_PRES; else if(WK_UP==1)return WKUP_PRES; }else if(KEY0==1&&KEY1==1&&WK_UP==0)key_up=1; return 0;// 无按键按下 }

#include "STC8H.h" #include "intrins.h" code unsigned char m[]={0x10,0x08,0x04,0x02,0x01}; code unsigned char n[]={0x7F,0xBF,0xDF,0xEF,0xF7,0xFB}; unsigned char j=0,k=0,i=0,l=0; sbit P2_5=P2^5; sbit P2_6=P2^6; sbit P2_7=P2^7; sbit P0_0=P0^0; char direction = 0; // 流水灯方向,0表示向右,1表示向左 char auto_mode = 0; // 自动模式,0表示手动模式,1表示自动模式 void delay() { char i,j; for(i=0;i<10;i++) for(j=0;j<50;j++); } void main() { P0M1 = 0x0E; P0M0 = 0x01; // 将P0_0设置为输入模式 P1M1 = 0x00; P1M0 = 0xFC; P2M0 = 0X1F; P2M1 = 0X00; P3M1 = 0xFC; P3M0 = 0x00; P2 = 0Xe0; // 初始化流水灯状态 while(1) { // 等待按键按下 while(P0_0 == 1); delay(); // 延时一段时间以消除抖动 if(P0_0 == 0) { // 再次检测确认按键按下 while(P0_0 == 0); // 等待按键松开 auto_mode = !auto_mode; // 切换自动模式 if(auto_mode) { // 如果进入自动模式,则初始化流水灯方向、计数器等 direction = 0; k = 0; i = 0; l = 0; P2_5 = 0; // 将流水灯方向设置为向右 } else { // 如果是手动模式,则将流水灯关闭 P2 = 0xe0; } } if(auto_mode || direction == 0) { // 如果是自动模式或向右流动 P2 = m[k]; k++; if(k > 4) { k = 0; P2_5 = 0; P2_6 = 1; // 向右流动时,将P2_5设置为低电平,P2_6设置为高电平,反之亦然 } } else { // 向左流动 P2 = m[4-k]; k++; if(k > 4) { k = 0; P2_5 = 1; P2_6 = 0; // 向左流动时,将P2_5设置为高电平,P2_6设置为低电平,反之亦然 } } P1 = n[i]; i++; if(i > 5) { i = 0; P1 = 0XFF; P3 = n[l]; l++; if(l > 5) { l = 0; P3 = 0XFF; } } // 等待按键松开 while(P0_0 == 0); delay(); // 延时一段时间以消除抖动 } }修改此程序实现按键控制五盏流水灯流水功能

int dsi_panel_set_backlight(struct dsi_panel panel, u32 bl_lvl) { int rc = 0; struct dsi_backlight_config bl = &panel->bl_config; if (panel->host_config.ext_bridge_mode) return 0; DSI_DEBUG("backlight type:%d lvl:%d\n", bl->type, bl_lvl); switch (bl->type) { case DSI_BACKLIGHT_WLED: rc = backlight_device_set_brightness(bl->raw_bd, bl_lvl); break; case DSI_BACKLIGHT_DCS: rc = dsi_panel_update_backlight(panel, bl_lvl); break; case DSI_BACKLIGHT_EXTERNAL: rc = lcd_bl_set_led_brightness(bl_lvl); //pr_err("dsi set bias brightness: %d\n", bl_lvl); rc = lcd_bias_set_led_brightness(bl_lvl); //pr_err("dsi set brightness: %d\n", bl_lvl); break; case DSI_BACKLIGHT_PWM: rc = dsi_panel_update_pwm_backlight(panel, bl_lvl); break; default: DSI_ERR("Backlight type(%d) not supported\n", bl->type); rc = -ENOTSUPP; } return rc; } int lcd_bl_set_led_brightness(int value)//for set bringhtness { dev_warn(&lcd_bl_i2c_client->dev, "lcm 8866 bl = %d\n", value); if (value < 0) { dev_warn(&lcd_bl_i2c_client->dev, "value=%d\n", value); return 0; } if (value > 0) { lcd_bl_write_byte(KTZ8866_DISP_BB_LSB, value & 0x07);// lsb lcd_bl_write_byte(KTZ8866_DISP_BB_MSB, (value >> 3) & 0xFF);// msb lcd_bl_write_byte(KTZ8866_DISP_BL_ENABLE, 0x4F); / BL enabled and Current sink 1/2/3/4 enabled;/ } else { lcd_bl_write_byte(KTZ8866_DISP_BB_LSB, 0x00);// lsb lcd_bl_write_byte(KTZ8866_DISP_BB_MSB, 0x00);// msb lcd_bl_write_byte(KTZ8866_DISP_BL_ENABLE, 0x00); /* BL enabled and Current sink 1/2/3/4 disabled;/ } return 0; } int lcd_bias_set_led_brightness(int value)//for set bringhtness { dev_warn(&lcd_bl_bias_i2c_client->dev, "lcm 8866 bl = %d\n", value); if (value < 0) { dev_warn(&lcd_bl_bias_i2c_client->dev, "invalid value=%d\n", value); return 0; } if (value > 0) { lcd_bl_bias_write_byte(KTZ8866_DISP_BB_LSB, value & 0x07);// lsb lcd_bl_bias_write_byte(KTZ8866_DISP_BB_MSB, (value >> 3) & 0xFF);// msb lcd_bl_bias_write_byte(KTZ8866_DISP_BL_ENABLE, 0x4F); / BL enabled and Current sink 1/2/3/4 enabled;/ } else { lcd_bl_bias_write_byte(KTZ8866_DISP_BB_LSB, 0x00);// lsb lcd_bl_bias_write_byte(KTZ8866_DISP_BB_MSB, 0x00);// msb lcd_bl_bias_write_byte(KTZ8866_DISP_BL_ENABLE, 0x00); / BL enabled and Current sink 1/2/3/4 disabled;*/ } return 0; } dsi_panel_set_backlight、lcd_bl_set_led_brightness和lcd_bias_set_led_brightness源码如上,帮忙用工作队列的方式,同时实现在case DSI_BACKLIGHT_EXTERNAL:下并发执行lcd_bl_set_led_brightness和lcd_bias_set_led_brightness两个函数

function _0x231129(_0x3470a4, _0x33c734) { var _0x113967 = _0xcc2e8a; if (_0x3773be[_0x113967(0x1d1)](_0x3773be[_0x113967(0x1cf)], _0x3773be[_0x113967(0x189)])) { var _0x44d653 = _0x29fb8c['a'][_0x113967(0x1ea)][_0x113967(0x1b7)][_0x113967(0x1e5)](_0x3773be[_0x113967(0x19e)]) , _0x237af1 = _0x29fb8c['a'][_0x113967(0x1ea)][_0x113967(0x1b7)][_0x113967(0x1e5)](_0x3773be[_0x113967(0x18b)]) , _0x90d961 = _0x3773be[_0x113967(0x1f5)] , _0x1a9696 = _0x29fb8c['a'][_0x113967(0x1ea)][_0x113967(0x1ad)][_0x113967(0x1e5)](_0x90d961) , _0x1b534c = _0x29fb8c['a'][_0x113967(0x1ea)][_0x113967(0x199)][_0x113967(0x186)](_0x1a9696) , _0x4430e9 = _0x29fb8c['a'][_0x113967(0x1bf)][_0x113967(0x1fe)](_0x1b534c, _0x44d653, { 'iv': _0x237af1, 'mode': _0x29fb8c['a'][_0x113967(0x1c1)][_0x113967(0x1fb)], 'padding': _0x29fb8c['a'][_0x113967(0x1f4)][_0x113967(0x18d)] }) , _0x514a58 = _0x4430e9[_0x113967(0x1f1)](_0x29fb8c['a'][_0x113967(0x1ea)][_0x113967(0x1b7)]) , _0x98aae0 = _0x514a58[_0x113967(0x1f1)]() , _0x531103 = _0x3773be[_0x113967(0x18c)](Object, _0x4a5bdd['j'])(_0x3470a4) ? '' : _0x3773be[_0x113967(0x1fd)](_0x3470a4[_0x113967(0x194)](0xb, 0xc), _0x3470a4[_0x113967(0x1f9)](-0x4)); _0x531103 = _0x3773be[_0x113967(0x1fd)](_0x3773be[_0x113967(0x198)](_0x531103, _0x33c734[_0x113967(0x1f9)](-0x4)), _0x33c734[_0x113967(0x194)](0x0, 0x3)); var _0x454e4e = new _0x2188d5['a'](); return _0x454e4e[_0x113967(0x1e2)](_0x3773be[_0x113967(0x198)](_0x3773be[_0x113967(0x193)](_0x3773be[_0x113967(0x1cd)], _0x98aae0), _0x3773be[_0x113967(0x1f0)])), _0x454e4e[_0x113967(0x1b6)](_0x531103); } else { var _0x30a783 = _0x1816ee ? function() { var _0x423bcc = _0x113967; if (_0x2d57e1) { var _0x1122f3 = _0x4a1468[_0x423bcc(0x1fc)](_0x3cb105, arguments); return _0x26b175 = null, _0x1122f3; } } : function() {} ; return _0x140c19 = ![], _0x30a783; } }这段代码请用php帮我写出来

// 初始化vl53l0x // dev:设备I2C参数结构体 VL53L0X_Error vl53l0x_init(VL53L0X_Dev_t *dev) { GPIO_InitTypeDef GPIO_InitStructure; VL53L0X_Error Status = VL53L0X_ERROR_NONE; VL53L0X_Dev_t *pMyDevice = dev; RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); // 使能AFIO时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 先使能外设IO PORTA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz GPIO_Init(GPIOA, &GPIO_InitStructure); // 根据设定参数初始化GPIOA GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); // 禁止JTAG,从而PA15可以做普通IO使用,否则PA15不能做普通IO!!! pMyDevice->I2cDevAddr = VL53L0X_Addr; // I2C地址(上电默认0x52) pMyDevice->comms_type = 1; // I2C通信模式 pMyDevice->comms_speed_khz = 400; // I2C通信速率 VL53L0X_i2c_init(); // 初始化IIC总线 VL53L0X_Xshut = 0; // 失能VL53L0X delay_ms(30); VL53L0X_Xshut = 1; // 使能VL53L0X,让传感器处于工作 delay_ms(30); vl53l0x_Addr_set(pMyDevice, 0x54); // 设置VL53L0X传感器I2C地址 if (Status != VL53L0X_ERROR_NONE) goto error; Status = VL53L0X_DataInit(pMyDevice); // 设备初始化 if (Status != VL53L0X_ERROR_NONE) goto error; delay_ms(2); Status = VL53L0X_GetDeviceInfo(pMyDevice, &vl53l0x_dev_info); // 获取设备ID信息 if (Status != VL53L0X_ERROR_NONE) goto error; AT24CXX_Read(0, (u8 *)&Vl53l0x_data, sizeof(_vl53l0x_adjust)); // 读取24c02保存的校准数据,若已校准 Vl53l0x_data.adjustok==0xAA if (Vl53l0x_data.adjustok == 0xAA) // 已校准 AjustOK = 1; else // 没校准 AjustOK = 0; error: if (Status != VL53L0X_ERROR_NONE) { print_pal_error(Status); // 打印错误信息 return Status; } return Status; }优化这段代码

#include "i2c.h"#define I2C_SPEED 100000 // I2C总线速度,单位为Hzvoid i2c_init(void){ GPIO_InitTypeDef GPIO_InitStruct; I2C_InitTypeDef I2C_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); // 使能GPIOB时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE); // 使能I2C1时钟 // 配置GPIOB6和GPIOB7为复用推挽输出 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_OD; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); // 配置I2C1为标准模式,时钟速度为100kHz I2C_InitStruct.I2C_Mode = I2C_Mode_I2C; I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStruct.I2C_OwnAddress1 = 0x00; I2C_InitStruct.I2C_Ack = I2C_Ack_Enable; I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_InitStruct.I2C_ClockSpeed = I2C_SPEED; I2C_Init(I2C1, &I2C_InitStruct); I2C_Cmd(I2C1, ENABLE); // 使能I2C1}void i2c_write(uint8_t addr, uint8_t *data, uint16_t len){ uint32_t timeout = 0; while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) { if (++timeout > 0x10000) return; } I2C_GenerateSTART(I2C1, ENABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) { if (++timeout > 0x10000) return; } I2C_Send7bitAddress(I2C1, addr << 1, I2C_Direction_Transmitter); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) { if (++timeout > 0x10000) return; } while (len--) { I2C_SendData(I2C1, *data++); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) { if (++timeout > 0x10000) return; } } I2C_GenerateSTOP(I2C1, ENABLE);}void i2c_read(uint8_t addr, uint8_t *data, uint16_t len){ uint32_t timeout = 0; while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) { if (++timeout > 0x10000) return; } I2C_GenerateSTART(I2C1, ENABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) { if (++timeout > 0x10000) return; } I2C_Send7bitAddress(I2C1, addr << 1, I2C_Direction_Receiver); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)) { if (++timeout > 0x10000) return; } while (len--) { if (len == 0) I2C_AcknowledgeConfig(I2C1, DISABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED)) { if (++timeout > 0x10000) return; } *data++ = I2C_ReceiveData(I2C1); } I2C_AcknowledgeConfig(I2C1, ENABLE); I2C_GenerateSTOP(I2C1, ENABLE);}

最新推荐

recommend-type

C8051f020 UART0

if(uart0_flag) { rxd_str=0; uart0_flag = 0; m=ur0_rxd; txd_string(m,LENM); } } //---------判断本设备命令及命令内容执行命令------- } //--------------------------------------...
recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

信捷MP3系列步进电机CAD图纸.zip

信捷MP3系列步进电机CAD图纸
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。