决策树连续型算法python调库
时间: 2023-10-15 07:04:48 浏览: 160
在Python中,可以使用sklearn库中的tree模块来构建决策树算法。然而,通过调库的方式只能处理数值型的属性,对于包含连续型属性和离散型属性的数据集处理起来比较困难。因此,可以使用非调库的方式实现决策树连续型算法。
要实现决策树连续型算法,首先需要了解决策树的算法原理。决策树的构建过程可以使用ID3算法,而构建过程中的终止条件包括属性值连续的情况。具体的代码实现过程可以参考相关资料。
另外,还可以使用基于基尼系数和基于信息熵的两种决策树模型来处理离散型数据和连续型数据,并将生成的决策树可视化。在模型评估时,可以使用numpy和pandas来计算准确率、混淆矩阵,并使用可视化函数展示结果。
总结来说,决策树连续型算法的实现可以通过非调库的方式,使用ID3算法和基于基尼系数或基于信息熵的模型,来处理包含连续型属性和离散型属性的数据集,并将结果可视化展示。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
#### 引用[.reference_title]
- *1* *4* [Python实现非调库的决策树算法](https://blog.csdn.net/expeltatar/article/details/107681547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [利用决策树算法在鲍鱼数据集上对年龄进行预测](https://blog.csdn.net/qq_53644346/article/details/125337125)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [人工智能框架决策树Python实现(基于numpy和pandas,不调sklearn方法)](https://download.csdn.net/download/weixin_43904427/79602773)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文