列出上述评价指标的python调库实现
时间: 2023-07-11 16:43:51 浏览: 99
下面是四个评价指标的Python调库实现:
1. Silhouette Score
```python
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# X为样本特征矩阵,y_pred为聚类结果
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
y_pred = kmeans.labels_
# 计算Silhouette Score
score = silhouette_score(X, y_pred, metric='euclidean')
```
2. Calinski-Harabasz Index
```python
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# X为样本特征矩阵,y_pred为聚类结果
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
y_pred = kmeans.labels_
# 计算Calinski-Harabasz Index
score = calinski_harabasz_score(X, y_pred)
```
3. Davies-Bouldin Index
```python
from sklearn.cluster import KMeans
from sklearn.metrics import davies_bouldin_score
# X为样本特征矩阵,y_pred为聚类结果
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
y_pred = kmeans.labels_
# 计算Davies-Bouldin Index
score = davies_bouldin_score(X, y_pred)
```
4. Normalized Mutual Information
```python
from sklearn.cluster import KMeans
from sklearn.metrics import normalized_mutual_info_score
# X为样本特征矩阵,y_true为真实标签,y_pred为聚类结果
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
y_pred = kmeans.labels_
# 计算Normalized Mutual Information
score = normalized_mutual_info_score(y_true, y_pred)
```
在上面的示例代码中,我们使用了sklearn库中的KMeans聚类模型,以及metrics模块中的评价指标函数。需要注意的是,不同的评价指标函数可能需要不同的参数,具体可以查看文档或者函数说明。
阅读全文