基于pytoch实现cifar10数据集的分类
时间: 2024-10-18 12:06:44 浏览: 26
在Python中,使用PyTorch库实现CIFAR-10数据集的图像分类通常需要以下几个步骤:
1. **导入必要的库**:
```python
import torch
from torch import nn, optim
import torchvision
torchvision.transforms包包含了处理CIFAR-10数据的各种预处理操作。
```
2. **加载和预处理数据**:
```python
transform = transforms.Compose([
transforms.ToTensor(), # 转换成Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 归一化
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=2)
```
3. **构建卷积神经网络模型**:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 输入通道数,卷积核数量,卷积核大小
self.pool = nn.MaxPool2d(2, 2) # 池化层
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5) # 展平以便输入全连接层
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
```
4. **定义损失函数、优化器和训练过程**:
```python
criterion = nn.CrossEntropyLoss() # 分类交叉熵损失
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(num_epochs): # 迭代次数
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {running_loss / len(trainloader)}")
```
5. **评估模型**:
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy of the network on the 10000 test images: {100 * correct / total}%")
```
完成以上步骤后,你就实现了基于PyTorch的CIFAR-10数据集的基本图像分类任务。
阅读全文