slowfast中加ECA注意力机制代码
时间: 2023-12-09 21:04:51 浏览: 159
以下是在SlowFast模型中添加ECA注意力机制的代码实现:
```python
import torch.nn as nn
class ECALayer(nn.Module):
def __init__(self, channel, gamma=2, b=1):
super(ECALayer, self).__init__()
t = int(abs(math.log(channel, 2) + b) / gamma)
k = t if t % 2 else t - 1
self.avg_pool = nn.AdaptiveAvgPool3d(1)
self.conv = nn.Conv3d(channel, channel, kernel_size=(k+1, 1, 1), padding=(k//2, 0, 0), bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.avg_pool(x)
y = self.conv(y)
y = self.sigmoid(y)
return x * y
```
在SlowFast模型中,可以在每个残差块的输出上应用ECALayer,以增强模型的表达能力和性能。具体实现方法可以参考以下代码:
```python
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm3d(out_channels)
self.conv2 = nn.Conv3d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm3d(out_channels)
self.conv3 = nn.Conv3d(out_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm3d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.eca = ECALayer(out_channels)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
out = self.eca(out)
return out
```
阅读全文