slowfast中加eca注意力机制代码
时间: 2023-07-17 11:03:37 浏览: 437
以下是将 ECA 注意力机制应用于 SlowFast 模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ECANet(nn.Module):
def __init__(self, channel, gamma=2, b=1):
super(ECANet, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
self.conv_du = nn.Sequential(
nn.Conv3d(channel, channel // b, kernel_size=1, stride=1, padding=0),
nn.ReLU(inplace=True),
nn.Conv3d(channel // b, channel, kernel_size=1, stride=1, padding=0),
nn.Sigmoid()
)
self.gamma = gamma
def forward(self, x):
b, c, t, h, w = x.size()
y = self.avg_pool(x)
y = self.conv_du(y)
y = x * y
return self.gamma * y + x
class SlowFast(nn.Module):
def __init__(self):
super(SlowFast, self).__init__()
# Slow pathway
self.slow_conv = nn.Conv3d(in_channels=3, out_channels=64, kernel_size=5, stride=1, padding=2)
# Fast pathway
self.fast_conv = nn.Conv3d(in_channels=3, out_channels=8, kernel_size=1, stride=1)
# ECA attention
self.eca_slow = ECANet(channel=64)
self.eca_fast = ECANet(channel=8)
def forward(self, x):
# Slow pathway
slow_out = self.slow_conv(x)
slow_out = self.eca_slow(slow_out)
# Fast pathway
fast_out = self.fast_conv(x)
fast_out = self.eca_fast(fast_out)
# Combine slow and fast pathways
out = torch.cat((slow_out, fast_out), dim=2)
return out
```
在上面的代码中,`ECANet` 是实现 ECA 注意力机制的模块,它被应用于 SlowFast 模型中的 Slow 和 Fast 路径。`SlowFast` 类定义了整个 SlowFast 模型,其中包括 Slow 和 Fast 路径的卷积层以及应用了 ECA 注意力机制的模块。在 `forward` 方法中,首先将输入数据通过 Slow 和 Fast 路径的卷积层,然后分别将输出应用 ECA 注意力机制,最后将 Slow 和 Fast 路径的结果在时间维度上进行拼接。
请注意,上述代码仅为示例,具体的模型架构和参数设置可能需要根据具体任务进行调整和优化。
阅读全文