车牌识别python代码
时间: 2023-07-23 11:01:25 浏览: 115
以下是一个基于Python和OpenCV的简单车牌识别代码示例:
```python
import cv2
import numpy as np
def preprocess(image):
# 图像预处理,包括缩放、灰度化、去噪声等
resized = cv2.resize(image, (640, 480))
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
return thresh
def find_contours(image):
# 寻找图像中的轮廓
contours, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return contours
def find_license_plate(contours):
# 根据轮廓,寻找可能的车牌区域
for contour in contours:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
aspect_ratio = w / float(h)
if 2.5 < aspect_ratio < 4.5:
return x, y, w, h
def recognize_license_plate(image, x, y, w, h):
# 车牌字符识别
plate_roi = image[y:y+h, x:x+w]
plate_gray = cv2.cvtColor(plate_roi, cv2.COLOR_BGR2GRAY)
_, plate_thresh = cv2.threshold(plate_gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
plate_text = pytesseract.image_to_string(plate_thresh, config='--psm 7')
return plate_text
# 加载车牌识别模型
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
# 读取图像
image = cv2.imread('car_plate.jpg')
# 图像预处理
preprocessed = preprocess(image)
# 寻找轮廓
contours = find_contours(preprocessed)
# 寻找车牌区域
plate_coords = find_license_plate(contours)
if plate_coords is not None:
x, y, w, h = plate_coords
# 车牌字符识别
plate_text = recognize_license_plate(image, x, y, w, h)
print("识别结果:", plate_text)
else:
print("未找到车牌区域")
```
注意,这只是一个简单的示例代码,实际的车牌识别需要更多的优化和处理,以适应不同的场景和条件。此外,代码中使用了Tesseract OCR库进行字符识别,需要先安装Tesseract OCR并配置正确的路径。
阅读全文