mid1= np.abs(mid1[int(np.ceil(nx/2)+1):-1 , int(np.ceil(ny/2)+1):-1])
时间: 2023-08-23 22:07:09 浏览: 189
这行代码使用了NumPy库中的函数和操作来获取数组mid1的一个子数组,并取其绝对值。下面是对代码中各个部分的解释:
1. `mid1[int(np.ceil(nx/2)+1):-1 , int(np.ceil(ny/2)+1):-1]`:这是对数组mid1的切片操作。它通过使用索引来选择mid1的一个子数组。
- `int(np.ceil(nx/2)+1)` 和 `int(np.ceil(ny/2)+1)` 是用来计算切片的起始索引。`np.ceil()` 函数是向上取整函数,`nx` 和 `ny` 是变量或值。
- `:-1` 表示切片的结束索引,这里使用了负数索引 `-1` 表示数组的最后一个元素。
2. `np.abs()`:这是NumPy库中的函数,用于获取数组的绝对值。在这个特定的情况下,它被应用于切片后的子数组mid1。
综上所述,这行代码的作用是获取mid1数组的一个子数组,然后对该子数组取绝对值,并将结果赋值给变量mid1。请注意,该代码片段中使用了一些数学函数和操作,所以确保在使用之前正确导入NumPy库。
相关问题
分析代码def motion_compensate(img, Mvx, Mvy, pel): m, n = np.shape(img)[0], np.shape(img)[1] #读取行数、列数 img = resize(img, (np.int32(m/pel), np.int32(n/pel)), mode = 'reflect' ) Blocksize = np.floor(np.shape(img)[0]/np.shape(Mvx)[0]) m, n = np.shape(img)[0], np.shape(img)[1] M, N = np.int32(np.ceil(m/Blocksize)*Blocksize), np.int32(np.ceil(n/Blocksize)*Blocksize) f = img[0:M, 0:N] Mvxmap = resize(Mvy, (N,M)) Mvymap = resize(Mvx, (N,M)) xgrid, ygrid = np.meshgrid(np.arange(0,N-0.99), np.arange(0,M-0.99)) X = np.clip(xgrid+np.round(Mvxmap/pel),0,N-1) Y = np.clip(ygrid+np.round(Mvymap/pel),0,M-1) idx = np.int32(Y.flatten()*N + X.flatten()) f_vec = f.flatten() g = np.reshape(f_vec[idx],[N,M]) g = resize(g, (np.shape(g)[0]*pel,np.shape(g)[1]*pel)) return g
这段代码实现了运动补偿的功能,下面是对代码的详细解析:
1. 首先获取图像的行数和列数。
2. 通过resize函数对图像进行下采样,以减少计算量,pel为下采样的倍数。
3. 根据运动矢量的大小计算出块的大小,即Blocksize。
4. 将下采样后的图像f扩展到M*N的大小。
5. 将运动矢量Mvx和Mvy分别通过resize函数扩展到M*N的大小,得到Mvxmap和Mvymap。
6. 使用np.meshgrid函数创建网格,得到xgrid和ygrid。
7. 根据运动矢量的大小,计算出在当前帧中块的新位置,并使用np.clip函数将其限制在图像范围内,得到X和Y。
8. 将X和Y展平,并计算出在展平后的向量中的索引值idx。
9. 将f展平为f_vec,并使用idx将其重新排列为M*N的矩阵g。
10. 对g进行上采样,并返回结果g。
这段代码的作用是对输入的图像进行运动补偿处理,通过运动矢量Mvx和Mvy计算出图像中块的新位置,从而得到补偿后的图像。其中,运动矢量的大小决定了块的大小,而下采样和上采样则用于减少计算量和消除补偿后的锯齿状伪影。
解释代码 def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.): w = img.shape[1] h = img.shape[0] rangle = np.deg2rad(angle) # now calculate new image width and height nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale) rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) rot_bboxes = list() for bbox in bboxes: xmin = bbox[0] ymin = bbox[1] xmax = bbox[2] ymax = bbox[3] point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1])) point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1])) point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1])) point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1])) concat = np.vstack((point1, point2, point3, point4)) concat = concat.astype(np.int32) rx, ry, rw, rh = cv2.boundingRect(concat) rx_min = rx ry_min = ry rx_max = rx + rw ry_max = ry + rh rot_bboxes.append([rx_min, ry_min, rx_max, ry_max]) return rot_img, rot_bboxes
这段代码是一个类中的一个方法,用于将图像和边界框进行旋转。它接受一个图像(img)和一组边界框(bboxes),然后旋转图像和边界框,并返回旋转后的图像和边界框。
首先,代码获取图像的宽度(w)和高度(h)。然后,它将给定的角度转换为弧度(rangle)。接下来,根据旋转角度和比例因子(scale)计算新的图像宽度(nw)和高度(nh)。接着,通过调用cv2.getRotationMatrix2D函数计算旋转矩阵(rot_mat),该矩阵描述了如何旋转图像。然后,通过计算旋转矩阵和图像尺寸之间的偏移量(rot_move),将旋转矩阵进行调整,以便在旋转后的图像中正确地定位原始图像。接下来,使用cv2.warpAffine函数将图像应用旋转矩阵,得到旋转后的图像(rot_img)。
接下来,代码针对每个边界框进行处理。对于每个边界框,首先提取其四个顶点的坐标。然后,通过将旋转矩阵与每个顶点坐标进行矩阵乘法,将每个顶点坐标转换为旋转后的图像中的坐标。接着,将转换后的顶点坐标连接起来,并使用cv2.boundingRect函数计算边界框的最小外接矩形。最后,将旋转后的边界框添加到rot_bboxes列表中。
最后,方法返回旋转后的图像(rot_img)和旋转后的边界框列表(rot_bboxes)。
阅读全文
相关推荐

















