torch.tensor.repeat
时间: 2023-11-03 12:52:28 浏览: 68
torch.tensor.repeat()函数可以对张量进行重复扩充。当参数只有两个时,表示行的重复倍数和列的重复倍数,1表示不重复。当参数有三个时,表示通道数的重复倍数、行的重复倍数和列的重复倍数,1表示不重复。举个例子,如果输入一个一维张量,参数为一个,即表示在列上进行重复n次。例如,使用a = torch.randn(3)创建一个一维张量a,然后使用a.repeat(4)进行重复扩充,结果会将a重复四次,形成一个新的张量。输出结果为(tensor([ 0.81, -0.57, 0.10]), tensor([ 0.81, -0.57, 0.10, 0.81, -0.57, 0.10, 0.81, -0.57, 0.10, 0.81, -0.57, 0.10]))。
相关问题
batch = torch.tensor(np.repeat(0,data.shape[0]), dtype=torch.int64)
This code creates a tensor called "batch" with the same length as the first dimension of the numpy array "data". The tensor is initialized with all zeros and a data type of int64. The purpose of this code is unclear without additional context.
能否具体应用到这个代码中去: def forward(self, sentA, sentB, sent1_lengths, sent2_lengths): """ Performs the forward pass for each batch """ sentence_a_embed = self.pretrained_model.encode(sentA) sentence_b_embed = self.pretrained_model.encode(sentB) sentence_a_embed = torch.tensor(sentence_a_embed, dtype=torch.float) sentence_b_embed = torch.tensor(sentence_b_embed, dtype=torch.float) sentence_a_embed = sentence_a_embed.unsqueeze(1).repeat(1, sent1_lengths, 1) sentence_b_embed = sentence_b_embed.unsqueeze(1).repeat(1, sent2_lengths, 1)其中sentA是(batch_size, embedding_dim)数据,sen1_lengths是(squence_length)数据
可以将上述代码修改为以下代码:
```python
def forward(self, sentA, sentB, sent1_lengths, sent2_lengths):
"""
Performs the forward pass for each batch
"""
sentence_a_embed = self.pretrained_model.encode(sentA)
sentence_b_embed = self.pretrained_model.encode(sentB)
sentence_a_embed = torch.tensor(sentence_a_embed, dtype=torch.float)
sentence_b_embed = torch.tensor(sentence_b_embed, dtype=torch.float)
# 将sentence_a_embed在第1维度上扩展
sentence_a_embed = sentence_a_embed.unsqueeze(1).expand(-1, sent1_lengths, -1)
# 将sentence_b_embed在第1维度上扩展
sentence_b_embed = sentence_b_embed.unsqueeze(1).expand(-1, sent2_lengths, -1)
# 将sentence_a_embed和sent1_lengths拼接为(batch_size, sent1_lengths, embedding_dim + 1)的张量
sentence_a_embed = torch.cat([sentence_a_embed, sent1_lengths.unsqueeze(-1)], dim=2)
# 将sentence_b_embed和sent2_lengths拼接为(batch_size, sent2_lengths, embedding_dim + 1)的张量
sentence_b_embed = torch.cat([sentence_b_embed, sent2_lengths.unsqueeze(-1)], dim=2)
# 其他代码
...
```
其中,`-1`表示该维度的大小由其他维度的大小来推断。`unsqueeze(-1)`表示在最后一维度上增加1维,`unsqueeze(1)`表示在第1维度上增加1维。
这样可以将`sentA`和`sent1_lengths`拼接为(batch_size, sent1_lengths, embedding_dim + 1)的张量,将`sentB`和`sent2_lengths`拼接为(batch_size, sent2_lengths, embedding_dim + 1)的张量,用于后续的操作。
阅读全文