torch.stack.T.repeat

时间: 2023-11-27 21:43:24 浏览: 105
torch.stack是PyTorch中的一个函数,用于将多个张量按照指定维度进行堆叠,生成一个新的张量。它的用法如下: ```python import torch x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) z = torch.tensor([7, 8, 9]) stacked = torch.stack([x, y, z], dim=0) print(stacked) ``` 输出如下: ``` tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) ``` 这里我们将三个一维张量按照第0个维度进行堆叠,生成了一个三行三列的二维张量。 T是PyTorch中的一个张量操作,用于将张量进行转置。它的用法如下: ```python import torch x = torch.tensor([[1, 2], [3, 4], [5, 6]]) transposed = x.T print(transposed) ``` 输出如下: ``` tensor([[1, 3, 5], [2, 4, 6]]) ``` 这里我们将一个三行两列的二维张量进行转置,生成了一个两行三列的二维张量。 repeat是PyTorch中的一个张量操作,用于将张量按照指定维度进行复制,生成一个新的张量。它的用法如下: ```python import torch x = torch.tensor([1, 2, 3]) repeated = x.repeat(3, 1) # 在维度0上复制3次,在维度1上复制1次 print(repeated) ``` 输出如下: ``` tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) ``` 这里我们将一个一维张量按照维度0进行复制三次,按照维度1进行复制一次,生成了一个三行三列的二维张量。
阅读全文

相关推荐

上述211行附近的代码如下,请具体指出问题 def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch

class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']

最新推荐

recommend-type

go 生成基于 graphql 服务器库.zip

格奇尔根 首页 > 文件 > gqlgen是什么?gqlgen是一个 Go 库,用于轻松构建 GraphQL 服务器。gqlgen 基于 Schema 优先方法— 您可以使用 GraphQL Schema 定义语言来定义您的 API 。gqlgen 优先考虑类型安全— 您永远不应该看到map[string]interface{}这里。gqlgen 启用 Codegen — 我们生成无聊的部分,以便您可以专注于快速构建您的应用程序。还不太确定如何使用gqlgen?将gqlgen与其他 Go graphql实现进行比较快速启动初始化一个新的 go 模块mkdir examplecd examplego mod init example添加github.com/99designs/gqlgen到项目的 tools.goprintf '//go:build tools\npackage tools\nimport (_ "github.com/99designs/gqlgen"\n _ "github.com/99designs/gqlgen
recommend-type

基于JAVA+SpringBoot+Vue+MySQL的社区物资交易互助平台 源码+数据库+论文(高分毕业设计).zip

项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:maven 数据库工具:navicat
recommend-type

法研杯2021类案检索赛道三等奖方案源码+项目说明+数据.zip

法研杯2021类案检索赛道三等奖方案源码+项目说明+数据.zip是一个专为计算机相关专业(如计科、信息安全、数据科学与大数据技术等)学生设计的宝贵学习资源。该压缩包包含了完整的项目源码、详细的项目说明文档以及用于训练和测试的数据集,旨在帮助参赛者深入理解并掌握类案检索的相关技术和方法。该项目通过实际案例,展示了如何运用自然语言处理和机器学习技术对法律案件进行智能检索和匹配。项目内容涵盖了从数据预处理、特征提取到模型训练和评估的全过程,为学习和研究类案检索技术提供了全面的参考。本项目不仅适合作为课程设计、期末大作业或毕设项目的参考,也是企业员工提升技能、进行实践操作的优质学习资料。通过实际操作和学习该项目,用户可以加深对类案检索技术的理解,并在实践中不断提升自己的技能水平。请注意,由于该资源包含完整的项目源码和数据集,下载和使用时请确保遵守相关法律法规和道德规范,尊重知识产权和隐私权。同时,建议用户在使用前仔细阅读项目说明文档,了解项目的整体架构和使用方法,以便更好地利用该资源进行学习和研究。
recommend-type

基于Cesium实现的对倾斜摄影模型的单体化分层方案源码.zip

本资源提供了基于Cesium实现的倾斜摄影模型单体化分层方案的完整源码,旨在帮助开发者深入理解并实践三维地理空间数据的处理与展示。通过Cesium平台,用户能够将倾斜摄影获取的高精度三维模型进行单体化和分层处理,实现对模型中每个独立元素的精细管理和交互操作。该资源适合具备一定计算机编程基础的学习者,特别是对Cesium感兴趣的学生、研究人员及GIS行业从业者。通过下载并学习这些源码,用户可以掌握倾斜摄影模型在Cesium中的加载、单体化以及分层显示等关键技术,进而提升自己在三维地理信息系统开发领域的技能水平。
recommend-type

Go 的 PostgreSQL 驱动程序和工具包.zip

Go 的 PostgreSQL 驱动程序和工具包 pgx - PostgreSQL 驱动程序和工具包pgx 是 PostgreSQL 的纯 Go 驱动程序和工具包。pgx 驱动程序是一个低级、高性能接口,它公开了 PostgreSQL 特定的功能,例如LISTEN/ NOTIFY和COPY。它还包括一个标准database/sql接口的适配器。工具包组件是一组相关的软件包,用于实现 PostgreSQL 功能,例如解析线路协议以及 PostgreSQL 与 Go 之间的类型映射。这些底层软件包可用于实现替代驱动程序、代理、负载均衡器、逻辑复制客户端等。示例用法package mainimport ( "context" "fmt" "os" "github.com/jackc/pgx/v5")func main() { // urlExample := "postgres://username:password@localhost:5432/database_name" conn, err := pgx.Connect(context.B
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。