请展示可变形卷积的计算实例(带数值的例子). 然后请用python代码实现
时间: 2024-03-08 21:47:06 浏览: 159
可变形卷积是一种可以自适应形变的卷积操作。它通过对卷积核的采样点进行位置偏移,从而实现对输入特征图的形变感知。下面是一个计算实例:
假设输入特征图 $X$ 的大小为 $3\times 3$,卷积核 $K$ 的大小为 $2\times 2$,步长为 $1$,带有 $2\times 2$ 的可变形网格,网格像素位置在 $[-1,1]$ 之间。
输入特征图 $X$:
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
$$
卷积核 $K$:
$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
$$
可变形网格:
$$
\begin{bmatrix}
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1
\end{bmatrix}
$$
首先,我们需要根据可变形网格计算采样点的偏移量,偏移量的范围在 $[-1,1]$ 之间。我们假设偏移量为:
$$
\begin{bmatrix}
-0.5 & 0.5 & 0.5 & -0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{bmatrix}
$$
接下来,我们需要根据偏移量计算采样点的位置。我们假设采样点的位置为:
$$
\begin{bmatrix}
1.5 & 2.5 & 3.5 & 4.5 \\
3.5 & 2.5 & 6.5 & 5.5
\end{bmatrix}
$$
注意,这里的采样点位置是浮点数,需要进行插值操作。我们可以使用双线性插值来计算采样点的值。假设插值得到的采样点值为:
$$
\begin{bmatrix}
p_1 & p_2 & p_3 & p_4 \\
p_5 & p_6 & p_7 & p_8
\end{bmatrix}
$$
最后,我们可以将采样点值与卷积核 $K$ 进行点乘,并求和得到输出特征图的一个像素值。假设输出特征图 $Y$ 的大小为 $2\times 2$,则有:
$$
\begin{bmatrix}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{bmatrix}
=
\begin{bmatrix}
p_1 a + p_2 b + p_3 c + p_4 d & p_5 a + p_6 b + p_7 c + p_8 d \\
p_2 a + p_1 b + p_4 c + p_3 d & p_6 a + p_5 b + p_8 c + p_7 d
\end{bmatrix}
$$
下面是使用Python实现可变形卷积的代码(假设使用PyTorch框架):
```python
import torch
from torch.nn.functional import interpolate
class DeformableConv2d(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
super(DeformableConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
# 创建可变形卷积的权重和偏置
self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
# 创建可变形卷积的偏移量和网格
self.offset_conv = torch.nn.Conv2d(in_channels, 2 * kernel_size * kernel_size, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
self.grid_conv = torch.nn.Conv2d(in_channels, 2 * kernel_size * kernel_size, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
# 初始化权重、偏置、偏移量和网格
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
torch.nn.init.kaiming_uniform_(self.offset_conv.weight, a=math.sqrt(5))
torch.nn.init.constant_(self.offset_conv.bias, 0)
torch.nn.init.kaiming_uniform_(self.grid_conv.weight, a=math.sqrt(5))
torch.nn.init.constant_(self.grid_conv.bias, 0)
def forward(self, x):
# 计算偏移量和网格
offset = self.offset_conv(x)
grid = self.grid_conv(x)
# 将偏移量和网格转换为采样点位置
offset = offset.sigmoid() * 2 - 1
grid = grid.sigmoid() * 2 - 1
grid = interpolate(grid, scale_factor=self.stride, mode='bicubic', align_corners=False)
N, C, H, W = x.shape
kH, kW = self.kernel_size, self.kernel_size
pH, pW = self.padding, self.padding
dH, dW = self.stride, self.stride
# 创建输出特征图
out_h = int((H + 2 * pH - kH) / dH + 1)
out_w = int((W + 2 * pW - kW) / dW + 1)
out = torch.zeros(N, self.out_channels, out_h, out_w, dtype=x.dtype, device=x.device)
# 对于每个输出特征图的像素,计算对应的采样点位置和值,并与卷积核进行点乘、求和
for i in range(out_h):
for j in range(out_w):
# 计算采样点位置
grid_ij = grid[:, :, i, j]
grid_ij = grid_ij.view(N, 2, kH * kW)
grid_x = torch.arange(-pW, W + pW, dW, dtype=x.dtype, device=x.device)
grid_y = torch.arange(-pH, H + pH, dH, dtype=x.dtype, device=x.device)
grid_y, grid_x = torch.meshgrid(grid_y, grid_x)
grid_x = grid_x.reshape(1, -1).repeat(N, 1)
grid_y = grid_y.reshape(1, -1).repeat(N, 1)
grid_xy = torch.stack((grid_x, grid_y), dim=1)
grid_xy = grid_xy.view(N, 2, -1)
grid_xy = grid_xy + grid_ij
grid_xy = grid_xy.permute(0, 2, 1)
# 计算采样点值
x_ij = interpolate(x, size=(kH, kW), mode='bicubic', align_corners=False)
x_ij = x_ij.view(N, C, -1)
x_ij = x_ij.permute(0, 2, 1)
offset_ij = offset[:, :, i, j].view(N, 2, kH * kW)
offset_ij = offset_ij.permute(0, 2, 1)
offset_xy = offset_ij + grid_ij
p_ij = interpolate(x, size=(out_h, out_w), mode='bicubic', align_corners=False)
p_ij = p_ij[:, :, i, j]
p_ij = p_ij.reshape(N, 1, 1, C)
p_ij = p_ij.repeat(1, kH * kW, 2, 1)
p_ij = p_ij.view(N, kH * kW, C)
p_xy = interpolate(p_ij, size=(out_h, out_w), mode='bicubic', align_corners=False)
p_xy = p_xy.view(N, kH * kW, 2, C)
p_xy = p_xy.permute(0, 1, 3, 2)
p_xy = p_xy.reshape(N, kH * kW * C, 2, 1)
offset_xy = offset_xy.reshape(N, kH * kW * C, 2, 1)
grid_xy = grid_xy.reshape(N, kH * kW * C, 2, 1)
xy = p_xy + offset_xy + grid_xy
xy = xy.permute(0, 2, 1, 3)
xy = xy.reshape(N, 2, kH, kW, C)
xy = xy.permute(0, 4, 2, 3, 1)
xy = xy.reshape(-1, 2)
x_ij = x_ij.repeat(1, 1, 2)
x_ij = x_ij.reshape(-1, C)
sample_ij = torch.nn.functional.grid_sample(x_ij.unsqueeze(1), xy.unsqueeze(1), mode='bilinear', padding_mode='zeros', align_corners=False)
sample_ij = sample_ij.view(N, kH, kW, C, 2)
sample_ij = sample_ij.permute(0, 3, 1, 2, 4)
sample_ij = sample_ij.reshape(N, C, kH * kW, 2)
sample_ij = sample_ij.permute(0, 2, 1, 3)
sample_ij = sample_ij.reshape(N * kH * kW, C, 2)
sample_ij = sample_ij.permute(0, 2, 1)
p = torch.mm(sample_ij, self.weight.reshape(-1, self.out_channels).transpose(1, 0))
p = p.reshape(N, kH, kW, self.out_channels)
p = p.permute(0, 3, 1, 2)
p = p.reshape(N, self.out_channels, kH * kW)
p = p.permute(0, 2, 1)
p = p.reshape(-1, self.out_channels)
y_ij = p.sum(dim=0)
if self.bias is not None:
y_ij = y_ij + self.bias
out[:, :, i, j] = y_ij
return out
```
这个代码实现了一个可变形卷积的PyTorch模块。它的输入和输出特征图都是4D张量,可以通过nn.Conv2d相同的方式使用。在模块中,我们首先计算偏移量和网格,然后根据偏移量和网格计算采样点位置和值,最后与卷积核进行点乘、求和得到输出特征图的像素值。注意,这个实现并不是官方的实现,可能与官方的实现有所不同,但它演示了可变形卷积的基本思想和计算过程。
阅读全文