可变形卷积pytorch代码实现
时间: 2024-01-27 20:14:46 浏览: 129
pytorch 自定义卷积核进行卷积操作方式
5星 · 资源好评率100%
根据提供的引用内容,可变形卷积的PyTorch代码实现可以参考DCNv2。该代码已经经过编译,可以直接使用。在Ubuntu环境下使用。
以下是一个可变形卷积的PyTorch代码实现的例子:
```python
import torch
from torch import nn
from torch.autograd import Function
# 定义可变形卷积的前向和反向传播函数
class DeformConvFunction(Function):
@staticmethod
def forward(ctx, input, offset, weight, bias=None):
# 前向传播逻辑
# ...
@staticmethod
def backward(ctx, grad_output):
# 反向传播逻辑
# ...
# 定义可变形卷积层
class DeformConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
super(DeformConv, self).__init__()
self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size * kernel_size, kernel_size, stride, padding, dilation, groups)
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
offset = self.offset_conv(input)
output = DeformConvFunction.apply(input, offset, self.weight, self.bias)
return output
# 使用可变形卷积层
input = torch.randn(1, 3, 32, 32)
conv = DeformConv(3, 64, kernel_size=3, stride=1, padding=1)
output = conv(input)
```
请注意,上述代码仅为示例,实际使用时需要根据具体需求进行适当修改。
阅读全文