使用pytorch写一下可变形卷积代码
时间: 2024-03-24 19:13:21 浏览: 126
Pytorch实现各种2d卷积示例
以下是一个简单的可变形卷积实现的代码,基于PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DeformableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(DeformableConv2d, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.offset_conv = nn.Conv2d(in_channels, 2*kernel_size*kernel_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.offset_conv.weight.data.zero_()
self.offset_conv.bias.data.zero_()
self.deform_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.deform_conv.weight.data.zero_()
self.deform_conv.bias.data.zero_()
def forward(self, x):
offset = self.offset_conv(x)
offset = offset.view(offset.size(0), 2, self.kernel_size*self.kernel_size, offset.size(2), offset.size(3))
offset[:, 0, :, :, :] = torch.sigmoid(offset[:, 0, :, :, :])
offset[:, 1, :, :, :] = torch.tanh(offset[:, 1, :, :, :])
output = F.conv2d(x, weight=self.deform_conv.weight, bias=self.deform_conv.bias, stride=self.stride, padding=self.padding)
output = F.deform_conv2d(input=output, offset=offset, weight=self.deform_conv.weight, bias=self.deform_conv.bias, stride=self.stride, padding=self.padding)
return output
```
这个类继承了PyTorch的`nn.Module`类,并在`__init__`方法中定义了偏移量卷积和可变形卷积的权重和偏置。在`forward`方法中,我们首先通过`offset_conv`计算偏移量,然后将结果重塑为`offset`张量。我们对偏移量的第一个通道应用了Sigmoid函数,而对第二个通道应用了tanh函数,以确保输出在-1和1之间。最后,我们使用`F.deform_conv2d`函数计算可变形卷积的输出,并将结果返回。
注意,这个实现仅仅是一个简单的示例,你可以自己根据需求进行优化和修改。
阅读全文