可变形离卷积 pytorch
时间: 2024-01-27 11:14:45 浏览: 120
可变形卷积是一种在卷积神经网络中引入空间变形的操作。在PyTorch中,可以使用torchvision库中的torchvision.ops.DeformConv2d来实现可变形卷积。
以下是一个使用可变形卷积的PyTorch示例代码:
```python
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import torchvision.ops as ops
# 定义一个简单的卷积神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.deform_conv = ops.DeformConv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 10, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.deform_conv(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
return x
# 加载数据集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 初始化网络和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
这段代码定义了一个简单的卷积神经网络,其中使用了可变形卷积(DeformConv2d)。在训练过程中,网络将使用CIFAR10数据集进行训练。
阅读全文