利用二次插值法,实现目标函数f(x)=x^2-3x+2在区间[-2,2]内极小点的MATLAB计算,收敛精度为0.005
时间: 2024-09-21 19:11:10 浏览: 121
在MATLAB中,我们可以使用二次插值法(Quadratic Interpolation)来寻找函数局部极值。不过,对于连续可导的函数,像`f(x) = x^2 - 3x + 2`这样的二次函数,我们通常更直接地使用求导来找出极值点。但对于教学目的,这里展示如何使用插值方法:
首先,让我们创建一个简单的函数来表示`f(x)`:
```matlab
function y = quadFunction(x)
y = x.^2 - 3*x + 2;
end
```
然后,我们将采用以下步骤来寻找极小点:
1. 定义区间和初始步长:
```matlab
xMin = -2;
xMax = 2;
h = (xMax - xMin) / 10; % 非常细的步长,以便精确逼近
```
2. 创建插值点数组:
```matlab
xData = [xMin:h:xMax]; % 插值点
fData = quadFunction(xData); % 计算每个插值点对应的函数值
```
3. 使用三次插值公式构造插值函数,并计算根(极小点):
```matlab
interpFun = fit2d(xData, fData, 'quadratic'); % 三次插值
guess = findRoot(interpFun, xMin, xMax, 'InitialStep', h); % 寻找根
```
4. 循环检查收敛,直到满足精度要求:
```matlab
while abs(guess(2) - prevGuess(2)) > 0.005 % 检查收敛精度
prevGuess = guess; % 保存上一次猜测
guess = findRoot(interpFun, guess(1), guess(2), 'InitialStep', h); % 更新猜测
end
```
5. 输出极小点的坐标:
```matlab
disp(['极小点的估计是 (' num2str(guess(1)), ', ', num2str(guess(2)) ')']);
```
注意,这个过程可能会比较慢且不一定能保证找到确切的极小点,特别是对于非凸函数,三次插值可能导致误差积累。在实际应用中,对二次函数直接求导并解一元二次方程会更为简便。
阅读全文