用c++完整实现装载问题的回溯算法(递归和迭代两种方式)要求有输入输出提示
时间: 2024-11-03 16:21:24 浏览: 44
在C++中,装载问题是经典的组合优化问题,如0-1背包问题,可以使用回溯算法(Backtracking)解决。这里我将展示如何用递归和迭代的方式分别实现。
**递归版本:**
```cpp
#include <iostream>
using namespace std;
// 定义物品结构
struct Item {
int weight, value;
};
bool canFit(Item* items, int n, int capacity) {
for (int i = 0; i < n; ++i) {
if (items[i].weight <= capacity)
return true;
}
return false;
}
void backtrack(Item* items, int n, int capacity, int currWeight, bool taken[]) {
// Base case: 如果当前重量超过容量,结束递归
if (currWeight > capacity)
return;
// 打印选择的物品
cout << "Picked item with weight: " << items[currItem].weight << ", value: " << items[currItem].value << endl;
// 尝试不选这个物品
taken[currItem] = false;
if (canFit(items + 1, n - 1, capacity - items[currItem].weight))
backtrack(items, n, capacity, currWeight, taken);
// 尝试选这个物品
taken[currItem] = true;
if (currWeight + items[currItem].weight <= capacity && canFit(items + 1, n - 1, capacity))
backtrack(items, n, capacity, currWeight + items[currItem].weight, taken);
}
int main() {
int n, capacity;
cout << "Enter number of items and the maximum capacity: ";
cin >> n >> capacity;
Item items[n];
cout << "Enter item weights and values: ";
for (int i = 0; i < n; ++i) {
cin >> items[i].weight >> items[i].value;
}
bool taken[n] = {false};
backtrack(items, n, capacity, 0, taken);
return 0;
}
```
**迭代版本:**
由于C++标准库不支持动态规划表(DP)的原生数据结构,我们可以用栈模拟状态回溯。以下是迭代版本的实现:
```cpp
#include <iostream>
#include <stack>
using namespace std;
// ...(同上,Item结构体和canFit函数)
void iterativeBacktrack(Item* items, int n, int capacity, vector<bool>& taken, stack<pair<Item*, int>>& state) {
taken[n - 1] = false;
state.push({items + n - 1, 0});
while (!state.empty()) {
pair<Item*, int> currState = state.top();
state.pop();
if (currState.first->weight <= capacity) {
cout << "Picked item with weight: " << currState.first->weight << ", value: " << currState.first->value << endl;
if (taken[currState.first - items]) continue; // 避免重复选择
taken[currState.first - items] = true;
if (canFit(items, n - 1, capacity - currState.first->weight)) {
state.push({items, capacity - currState.first->weight});
}
} else {
taken[currState.first - items] = false;
}
}
}
int main() {
// 输入同上...
vector<bool> taken(n, false);
stack<pair<Item*, int>> state;
iterativeBacktrack(items, n, capacity, taken, state);
return 0;
}
```
在这个例子中,用户需要输入项目数量和最大容量,然后逐项输入重量和价值。程序会打印出所有可行的装载方案。
阅读全文