神经网络优化pid python

时间: 2023-11-06 18:02:55 浏览: 128
神经网络优化PID(Proportional-Integral-Derivative)算法是使用神经网络来改进传统PID控制算法的一种方法。PID控制算法是一种经典的控制方法,通过调整比例、积分和微分参数,使系统的输出能够快速、稳定地跟踪系统的期望值。 为了提高PID控制算法的性能,可以使用神经网络来自适应地调整PID参数。首先,收集系统的输入和输出数据,并将其用作神经网络的训练数据。然后,在神经网络中,将输入数据作为网络的输入层,并将输出数据作为网络的输出层。中间的隐藏层可以根据需求设置,用于提取特征、学习非线性关系等。 在神经网络训练过程中,使用一种合适的优化算法(如梯度下降法)来调整网络的权重和偏置,从而使网络的输出能够更好地逼近系统的期望输出。通过反复迭代,优化网络参数,直到网络的输出与系统期望输出之间的差异最小化。 在优化PID控制中,一个常见的做法是将PID的输出作为神经网络的输入,将系统的期望输出和实际输出之间的误差作为神经网络的监督信号。这样,在每个时间步长中,神经网络将根据当前误差来计算出新的PID参数,通过更新PID参数,使系统能够更好地适应外部环境的变化。 总体来说,通过使用神经网络优化PID算法,可以提高系统的控制性能和鲁棒性。然而,在实际应用中,选择合适的神经网络结构和优化算法,以及合理的训练数据和监督信号,都需要根据具体问题进行调整和优化。
相关问题

基于BP神经网络的PID控制算法 python

以下是一个基于BP神经网络的PID控制算法Python代码示例: ```python import numpy as np class BP_PID: def __init__(self, input_size, hidden_size, output_size, Kp, Ki, Kd, learning_rate): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.Kp = Kp self.Ki = Ki self.Kd = Kd self.learning_rate = learning_rate self.W1 = np.random.randn(input_size, hidden_size) self.b1 = np.zeros((1, hidden_size)) self.W2 = np.random.randn(hidden_size, output_size) self.b2 = np.zeros((1, output_size)) self.I = 0 self.D = 0 self.error_sum = 0 self.last_error = 0 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def forward(self, x): self.hidden = self.sigmoid(np.dot(x, self.W1) + self.b1) self.output = np.dot(self.hidden, self.W2) + self.b2 def backward(self, x, y, output): error = y - output self.error_sum += error derivative = error - self.last_error self.I = self.error_sum * self.Ki self.D = derivative * self.Kd self.last_error = error d_output = error d_hidden = np.dot(d_output, self.W2.T) * self.sigmoid_derivative(self.hidden) self.W2 += self.learning_rate * np.dot(self.hidden.T, d_output) self.b2 += self.learning_rate * np.sum(d_output, axis=0, keepdims=True) self.W1 += self.learning_rate * np.dot(x.T, d_hidden) self.b1 += self.learning_rate * np.sum(d_hidden, axis=0, keepdims=True) def train(self, x, y): self.forward(x) self.backward(x, y, self.output) def control(self, x): self.forward(x) error = 0 - self.output control = self.Kp * error + self.I + self.D return control ``` 这个类实现了一个具有输入层、隐藏层和输出层的BP神经网络,可以用于PID控制问题。在训练时,我们使用反向传播算法来更新神经网络的权重和偏置,同时计算积分项和微分项。在控制时,我们使用当前输出与期望输出之间的误差来计算比例项,使用累积误差来计算积分项,使用当前误差与上一次误差之差来计算微分项,最终得到控制量。

基于bp神经网络的pid控制的python代码

下面是一个基于BP神经网络的PID控制的Python代码示例: ```python import numpy as np class BPNN_PID: def __init__(self, input_size, hidden_size, output_size, learning_rate): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.learning_rate = learning_rate self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size) self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size) self.bias_hidden = np.zeros((1, self.hidden_size)) self.bias_output = np.zeros((1, self.output_size)) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def forward(self, inputs): hidden = np.dot(inputs, self.weights_input_hidden) + self.bias_hidden hidden_activation = self.sigmoid(hidden) output = np.dot(hidden_activation, self.weights_hidden_output) + self.bias_output return output def train(self, inputs, targets): hidden = np.dot(inputs, self.weights_input_hidden) + self.bias_hidden hidden_activation = self.sigmoid(hidden) output = np.dot(hidden_activation, self.weights_hidden_output) + self.bias_output error = targets - output d_output = error d_output *= self.learning_rate d_hidden = np.dot(d_output, self.weights_hidden_output.T) self.weights_hidden_output += np.dot(hidden_activation.T, d_output) self.bias_output += np.sum(d_output, axis=0, keepdims=True) d_hidden *= hidden_activation * (1 - hidden_activation) self.weights_input_hidden += np.dot(inputs.T, d_hidden) self.bias_hidden += np.sum(d_hidden, axis=0, keepdims=True) ``` 请注意,这只是一个简单的示例代码,实际使用时可能需要根据具体问题进行适当的修改和优化。

相关推荐

最新推荐

recommend-type

基于神经网络优化pid参数的过程控制.doc

基于神经网络优化PID参数的过程控制 本文主要介绍基于神经网络优化PID参数的柴油机转速控制系统。该系统通过基于BP神经网络的PID控制器,自动在线修正PID参数,从而控制柴油机转速,提高控制效果。同时,文中还对...
recommend-type

python实现PID算法及测试的例子

在实际应用中,PID控制器可能需要结合其他控制策略,如模糊逻辑或神经网络,以适应复杂动态系统。此外,实时性能和稳定性也是设计时需要考虑的关键因素。总的来说,Python实现的PID算法提供了一种简单灵活的方式,...
recommend-type

基于springboot+vue开发社区医疗服务系统--附毕业论文+源代码+sql(毕业设计).rar

本项目是一个基于Spring Boot和Vue开发的社区医疗服务系统,旨在为计算机相关专业的学生提供毕业设计或课程设计的实践机会,同时也适合Java学习者进行项目实战练习。项目资源包括完整的源代码、数据库脚本以及详细的开发说明,并附有参考论文,可直接用于毕业设计。 系统采用Spring Boot框架搭建后台,利用MySQL数据库存储数据,通过JDK、IntelliJ IDEA和Tomcat构建开发环境。经过严格的调试,项目已确保稳定运行,为学习者提供了一个可靠的开发平台。 在功能方面,该系统不仅实现了用户注册与登录、医疗服务预约、健康档案管理、在线咨询等基本功能,还提供了数据统计与分析等高级功能,以满足社区医疗服务的实际需求。学习者可以在现有代码基础上进行修改和扩展,实现更多个性化功能,从而提升自己的编程能力和项目实战经验。
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**