pytorch nn.Linear源代码解读
时间: 2023-11-05 14:05:14 浏览: 213
从这些引用内容中可以看出,nn.Linear是PyTorch中的一个模块,用于定义线性变换。它的主要功能是将输入数据进行线性变换,并返回输出。具体来说,nn.Linear的forward函数接受输入数据并将其与权重矩阵相乘,然后加上偏置项,最后输出结果。
在PyTorch的源代码中,nn.Linear是继承自nn.Module的一个类。它有两个主要的成员变量:weight和bias,分别代表权重和偏置项。在forward函数中,输入数据通过torch.matmul函数与权重矩阵相乘,并加上偏置项。最后,输出结果的大小由权重矩阵的形状决定。
通过调用nn.Linear类的实例,可以创建一个线性变换的模型。在给定输入数据后,通过调用该模型的forward函数,可以得到输出结果。
相关问题
pytorch对fashion mnist 分类 源代码
以下是使用PyTorch对Fashion MNIST数据集进行分类的源代码示例:
```python
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# Define transform to normalize data
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
# Download and load the training and testing datasets
trainset = datasets.FashionMNIST('~/.pytorch/FashionMNIST_data/', download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
testset = datasets.FashionMNIST('~/.pytorch/FashionMNIST_data/', download=True, train=False, transform=transform)
testloader = DataLoader(testset, batch_size=64, shuffle=True)
# Define the neural network architecture
model = nn.Sequential(nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 10))
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Train the model
epochs = 10
for e in range(epochs):
running_loss = 0
for images, labels in trainloader:
# Flatten images into a 784 long vector
images = images.view(images.shape[0], -1)
# Forward pass, backward pass and optimize
optimizer.zero_grad()
output = model.forward(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
print(f"Training loss: {running_loss/len(trainloader)}")
# Test the trained network on the test set
accuracy = 0
with torch.no_grad():
model.eval()
for images, labels in testloader:
# Flatten images into a 784 long vector
images = images.view(images.shape[0], -1)
# Forward pass and calculate accuracy
logps = model(images)
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
else:
print(f"Accuracy: {accuracy/len(testloader)}")
```
这段代码使用了一个简单的前馈神经网络,包含四个全连接层和ReLU激活函数。训练使用了随机梯度下降优化器和交叉熵损失函数,测试使用了测试集计算模型的准确率。 Fashion MNIST是一个流行的图像分类数据集,由Zalando的研究团队收集。它包含62,000个训练图像和10,000个测试图像,每个图像的大小为28x28像素。
基于pytorch的vgg16的源代码
以下是基于PyTorch的VGG16的源代码:
```python
import torch
import torch.nn as nn
class VGG16(nn.Module):
def __init__(self, num_classes=1000):
super(VGG16, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv8 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv12 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv13 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.fc1 = nn.Linear(512 * 7 * 7, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, num_classes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.pool1(x)
x = self.relu(self.conv3(x))
x = self.relu(self.conv4(x))
x = self.pool2(x)
x = self.relu(self.conv5(x))
x = self.relu(self.conv6(x))
x = self.relu(self.conv7(x))
x = self.pool3(x)
x = self.relu(self.conv8(x))
x = self.relu(self.conv9(x))
x = self.relu(self.conv10(x))
x = self.pool4(x)
x = self.relu(self.conv11(x))
x = self.relu(self.conv12(x))
x = self.relu(self.conv13(x))
x = self.pool5(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
```
该模型包括VGG16的所有层(共13层卷积层和3个全连接层),并且使用ReLU激活函数。在前向传播时,输入数据首先通过卷积层和池化层进行特征提取,然后通过全连接层进行分类。最后的输出是一个含有num_classes个元素的向量,表示每个类别的概率分数。
阅读全文