if the readers want to know the result of the paper quickly, which part can

时间: 2024-01-05 21:01:04 浏览: 26
如果读者想迅速了解论文的结果,他们可以阅读论文的摘要部分。论文摘要是对整篇论文的简洁概述,通常包括研究目的、方法、主要发现和结论等要点。通过阅读摘要,读者能够迅速了解论文的核心内容和研究结果,帮助他们决定是否进一步阅读全文。摘要通常是论文的开篇部分,精炼明了,能够为读者提供论文的总体观念。 另外,读者还可以查看论文的结论部分。结论是论文的重要组成部分,它对整个研究进行总结并提出研究结果的解释和实际应用的建议。结论通常是论文末尾的一个段落或小节,读者可以从中直接获得研究结果的要点,而不必全文细读。 除了阅读摘要和结论,读者还可以查看论文的图表和图表标题,特别是结果展示部分。图表通常以直观的方式呈现数据和结果,读者可以通过快速浏览图表了解研究结果。 总之,摘要、结论以及图表都是读者快速了解论文结果的关键部分。通过阅读这些部分,读者可以在短时间内获取论文的主要结果和发现,有助于他们快速了解、引用或延伸研究。
相关问题

raytracing from the groundup

"Ray Tracing from the Ground Up" is a book written by Kevin Suffern that provides a comprehensive introduction to the principles and practices of ray tracing. The book covers topics such as ray-surface intersection, shading, shadows, reflections, refractions, and global illumination, and provides practical advice on implementing these techniques in software. The book is designed to be accessible to both beginners and experienced programmers, and includes numerous examples and exercises to help readers develop their skills. It also includes code samples in C++ and Java, as well as a complete ray tracing engine implemented in C++. Overall, "Ray Tracing from the Ground Up" is an excellent resource for anyone interested in learning about ray tracing, whether as a hobbyist or a professional in the field of computer graphics.

Write the code about Readers-Writer Problem Implementation in C++.1、 A data set is shared among several concurrent processes.Problem – allow multiple readers (at most 8) to read at the same time. Only one single writer can access the shared data at the same time.

Here is an implementation of Readers-Writer Problem in C++ using Semaphores: ```cpp #include <iostream> #include <thread> #include <mutex> #include <semaphore.h> using namespace std; const int MAX_READERS = 8; int data = 0; int active_readers = 0; bool writer_active = false; sem_t mutex_read, mutex_write, reader_turnstile, writer_turnstile; void reader() { sem_wait(&reader_turnstile); sem_wait(&mutex_read); active_readers++; if (active_readers == 1) { sem_wait(&writer_turnstile); } sem_post(&mutex_read); sem_post(&reader_turnstile); cout << "Reader " << this_thread::get_id() << " read data: " << data << endl; sem_wait(&mutex_read); active_readers--; if (active_readers == 0) { sem_post(&writer_turnstile); } sem_post(&mutex_read); } void writer() { sem_wait(&writer_turnstile); writer_active = true; sem_post(&writer_turnstile); sem_wait(&mutex_write); cout << "Writer " << this_thread::get_id() << " is writing data" << endl; data++; cout << "Writer " << this_thread::get_id() << " finished writing data" << endl; sem_post(&mutex_write); sem_wait(&writer_turnstile); writer_active = false; sem_post(&writer_turnstile); } int main() { sem_init(&mutex_read, 0, 1); sem_init(&mutex_write, 0, 1); sem_init(&reader_turnstile, 0, MAX_READERS); sem_init(&writer_turnstile, 0, 1); thread readers[MAX_READERS]; thread writers[3]; for (int i = 0; i < MAX_READERS; i++) { readers[i] = thread(reader); } for (int i = 0; i < 3; i++) { writers[i] = thread(writer); } for (int i = 0; i < MAX_READERS; i++) { readers[i].join(); } for (int i = 0; i < 3; i++) { writers[i].join(); } sem_destroy(&mutex_read); sem_destroy(&mutex_write); sem_destroy(&reader_turnstile); sem_destroy(&writer_turnstile); return 0; } ``` In this implementation, we have two semaphores for mutex (one for readers and one for writers) and two turnstile semaphores (one for readers and one for writers). When a reader wants to read, it first waits on the reader turnstile to ensure that there are not too many readers. Then, it waits on the reader mutex to ensure exclusive access to the shared data's active readers counter. It increments the active readers counter and, if it is the first reader, waits on the writer turnstile to block any writers from accessing the shared data. It then releases the reader mutex and signals the reader turnstile. It reads the shared data and then waits on the reader mutex again to decrement the active readers counter. If it is the last reader, it signals the writer turnstile to allow any waiting writers to access the shared data. When a writer wants to write, it waits on the writer turnstile to ensure exclusive access to the shared data. It sets the writer_active flag to true, waits on the writer mutex to ensure exclusive access to the shared data, writes to the data, and then sets the writer_active flag to false. It then signals the writer turnstile to allow other writers or readers to access the shared data.

相关推荐

7.3.1 Suzuki–Kasami Algorithm This algorithm is defined for a completely connected network of processes. It assumes that initially an arbitrary process has the token. A process i that does not have the token but wants to enter its CS broadcasts a request (i, num), where num is sequence number of that request. The algorithm guarantees that eventually process i receives the token. Every process i maintains an array req[0.. n − 1] of integers, where req[j] designates the sequence number of the latest request received from process j. Note that although every process receives a request, only one process (which currently has the token) can grant the token. As a result, some pending requests become stale or outdated. An important issue in this algorithm is to identify and discard these stale requests. To accomplish this, each process uses the following two additional data structures that are passed on with the token by its current holder: • An array last[0.. n − 1] of integers, where last[k] = r implies that during its last visit to its CS, process k has completed its rth trip • A queue Q containing the identifiers of processes with pending requests When a process i receives a request with a sequence number num from process k, it updates req[k] to max(req[k], num), so that req[k] now represents the most recent request from process k. A process holding the token must guarantee (before passing it to another process) that its Q contains the most recent requests. To satisfy this requirement, when a process i receives a token from another process, it executes the following steps: • It copies its num into last[i]. • For each process k, process i retains process k’s name in its local queue Q only if 1 + last[k] = req[k] (this establishes that the request from process k is a recent one). • Process i completes the execution of its CS codes. • If Q is nonempty, then it forwards the token to the process at the head of Q after deleting its entry. To enter the CS, a process sends (n − 1) requests and receives one message containing the token. The total number of messages required to complete one visit to its CS is thus (n − 1) + 1 = n. Readers are referred to [SK85] for a proof of this algorithm理解Suzuki-Kasami算法,并回答如下问题: 算法是如何辨别和丢弃过时的请求的,或者说为什么要求1 + last[k] = req[k]?

优化这段代码 #include <iostream> #include <thread> #include <chrono> #include <mutex> #include <semaphore.h> using namespace std; // shared data resource int shared_data = 0; // semaphores for synchronization sem_t mutex, rw_mutex; // number of readers int num_readers = 0; // reader function void reader(int id) { while (true) { // acquire mutex to update the number of readers sem_wait(&mutex); num_readers++; if (num_readers == 1) { // if this is the first reader, acquire the rw_mutex sem_wait(&rw_mutex); } sem_post(&mutex); // read the shared data cout << "Reader " << id << " read shared data: " << shared_data << endl; // release mutex sem_wait(&mutex); num_readers--; if (num_readers == 0) { // if this is the last reader, release the rw_mutex sem_post(&rw_mutex); } sem_post(&mutex); // sleep for a random amount of time this_thread::sleep_for(chrono::milliseconds(rand() % 1000)); } } // writer function void writer(int id) { while (true) { // acquire the rw_mutex sem_wait(&rw_mutex); // write to the shared data shared_data++; cout << "Writer " << id << " wrote to shared data: " << shared_data << endl; // release the rw_mutex sem_post(&rw_mutex); // sleep for a random amount of time this_thread::sleep_for(chrono::milliseconds(rand() % 1000)); } } int main() { // initialize semaphores sem_init(&mutex, 0, 1); sem_init(&rw_mutex, 0, 1); // create reader threads thread readers[8]; for (int i = 0; i < 8; i++) { readers[i] = thread(reader, i); } // create writer threads thread writers[2]; for (int i = 0; i < 2; i++) { writers[i] = thread(writer, i); } // join threads for (int i = 0; i < 8; i++) { readers[i].join(); } for (int i = 0; i < 2; i++) { writers[i].join(); } // destroy semaphores sem_destroy(&mutex); sem_destroy(&rw_mutex); return 0; }

最新推荐

recommend-type

Bluetooth Application Developer’s Guide The Short Range Interconnect Solution(syngress安全图书)

.While other books introduce readers to the possibilities of Bluetooth, this is the first comprehensive, advanced level programming book written specifically for embedded application developers ...
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依