根据文档内容写出代码部分,不用写出第五点的代码,数据集由这些列内容组成"carat","cut","color","clarity","depth","table","price","x","y","z"
时间: 2024-06-09 21:03:58 浏览: 97
以下是根据文档内容编写的代码片段,用于处理钻石数据集并执行部分任务:
```python
# 导入所需的库
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.svm import SVC
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Flatten
from keras.layers import Dense
import time
# 1. 读取CSV文件到pandas DataFrame
diamonds_df = pd.read_csv('diamondscsv.csv')
# 2. 提取需要的列
columns_of_interest = ['carat', 'cut', 'color', 'clarity']
data = diamonds_df[columns_of_interest]
# 3. 对分类列进行编码
le = LabelEncoder()
for col in ['cut', 'color', 'clarity']:
data[col] = le.fit_transform(data[col])
# 4. LDA降维(假设X是特征,y是标签)
X = data.drop('clarity', axis=1) # 假设clarity是类别特征,不在LDA中考虑
y = data['clarity'] # 注意这里clarity列需要单独处理
lda = LDA(n_components=1)
start_time = time.time()
lda_X = lda.fit_transform(X, y)
print(f"LDA耗时: {time.time() - start_time} 秒")
# 5. SVM分类(省略,因为题目要求不执行)
# svm = SVC()
# svm.fit(X, y)
# 6. 卷积神经网络(CNN)模型(假设数据已经预处理为适合CNN的形式)
# model = Sequential()
# model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape, 1)))
# model.add(MaxPooling1D(pool_size=2))
# model.add(Flatten())
# model.add(Dense(1, activation='sigmoid')) # 由于是二分类,最后一层激活函数为sigmoid
# model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# model.fit(X, y, epochs=10)
#
阅读全文
相关推荐
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)