batch normalization代码示例
时间: 2023-10-20 17:07:00 浏览: 173
好的,以下是一个简单的 batch normalization 的代码示例:
```python
import numpy as np
class BatchNorm:
def __init__(self, gamma, beta, eps=1e-5):
self.gamma = gamma
self.beta = beta
self.eps = eps
self.mean = None
self.var = None
self.batch_size = None
self.xc = None
self.std = None
def forward(self, x):
self.batch_size = x.shape[0]
self.mean = np.mean(x, axis=0)
self.xc = x - self.mean
self.var = np.var(x, axis=0)
self.std = np.sqrt(self.var + self.eps)
x_norm = self.xc / self.std
out = self.gamma * x_norm + self.beta
return out
def backward(self, dout):
dx_norm = dout * self.gamma
dxc = dx_norm / self.std
dstd = -np.sum(dx_norm * self.xc / (self.std * self.std), axis=0)
dvar = 0.5 * dstd / self.std
dsq = np.ones_like(dout) / self.batch_size * dvar
dxc += 2 * self.xc * dsq
dmu = -np.sum(dxc, axis=0)
dx = dxc + np.ones_like(dout) / self.batch_size * dmu
dgamma = np.sum(dout * (self.xc / self.std), axis=0)
dbeta = np.sum(dout, axis=0)
return dx, dgamma, dbeta
```
其中,gamma 和 beta 是可学习的参数,eps 是一个小常数,用于避免除以零的情况。
阅读全文