RRT matlab
时间: 2023-11-02 22:02:11 浏览: 99
RRT(Rapidly-Exploring Random Tree)算法是一种常用的移动机器人或机械臂路径规划算法。该算法通过在配置空间中随机生成节点,并在每次迭代中将节点连接到树中以探索新的区域。RRT算法的主要步骤如下:
1. 初始化树,设置起点作为树的唯一节点。
2. 生成随机节点,并找到树中最近的节点。
3. 在最近节点和随机节点之间插入一条路径,并检查路径是否与障碍物相交。
4. 如果路径不相交,则将随机节点添加到树中,并将路径加入到树的边列表中。
5. 重复步骤2-4,直到生成了足够的节点或找到了目标节点。
6. 如果找到了目标节点,构建从目标节点到起点的路径,即可得到规划好的路径。
相关问题
rrt matlab
RRT (Rapidly-exploring Random Tree) is a popular motion planning algorithm used in robotics and computer graphics. It is designed to efficiently explore the state space of a system and find feasible paths between a start and goal configuration.
In MATLAB, you can implement the RRT algorithm using the Robotics System Toolbox, which provides functions for robot motion planning. The toolbox includes a class called 'robotics.RRT' that encapsulates the RRT algorithm. Here is an example of how you can use it:
```matlab
% Create a RRT object
rrt = robotics.RRT;
% Set the state space bounds
bounds = [xmin xmax; ymin ymax; zmin zmax];
rrt.StateBounds = bounds;
% Set the start and goal configurations
startConfig = [x_start; y_start; z_start];
goalConfig = [x_goal; y_goal; z_goal];
rrt.Start = startConfig;
rrt.Goal = goalConfig;
% Set other parameters (optional)
rrt.MaxConnectionDistance = distance;
rrt.MaxIterations = iterations;
% Plan the path
path = plan(rrt);
% Visualize the path
show(rrt);
% Execute the path on a robot (if applicable)
robot.execute(path);
```
In this example, you need to set the state space bounds, start and goal configurations, and optionally adjust other parameters like the maximum connection distance and maximum number of iterations. After planning the path,
rrt matlab算法,rrt算法matlab代码
以下是基于 RRT(Rapidly-exploring Random Tree)算法的 Matlab 代码,用于构建机器人路径规划:
```matlab
clear all; close all; clc
% Environment and robot parameters
xMin = 0;
xMax = 10;
yMin = 0;
yMax = 10;
obs = [4 4 1; 6 6 1];
robotLength = 0.5;
robotWidth = 0.5;
% Start and goal positions
startPos = [1,1];
goalPos = [9,9];
% RRT parameters
maxNodes = 5000;
stepSize = 0.5;
nodes(1).x = startPos(1);
nodes(1).y = startPos(2);
nodes(1).parent = 0;
for i = 2:maxNodes
x = rand*(xMax-xMin) + xMin;
y = rand*(yMax-yMin) + yMin;
node = [x,y];
% Check if node is inside an obstacle
insideObs = 0;
for j = 1:size(obs,1)
if sqrt((node(1)-obs(j,1))^2 + (node(2)-obs(j,2))^2) < obs(j,3)
insideObs = 1;
break;
end
end
if insideObs == 1
continue;
end
% Find the nearest node
dist = inf;
nearestNode = 0;
for j = 1:length(nodes)
d = sqrt((node(1)-nodes(j).x)^2 + (node(2)-nodes(j).y)^2);
if d < dist
dist = d;
nearestNode = j;
end
end
% Check if there is a direct path between the nearest node and the new node
theta = atan2(node(2)-nodes(nearestNode).y, node(1)-nodes(nearestNode).x);
xTest = nodes(nearestNode).x + stepSize*cos(theta);
yTest = nodes(nearestNode).y + stepSize*sin(theta);
if sqrt((xTest-node(1))^2 + (yTest-node(2))^2) > stepSize
continue;
end
% Check if the direct path is inside an obstacle
insideObs = 0;
for j = 1:size(obs,1)
if sqrt((xTest-obs(j,1))^2 + (yTest-obs(j,2))^2) < obs(j,3)
insideObs = 1;
break;
end
end
if insideObs == 1
continue;
end
% Add the new node to the tree
nodes(end+1).x = xTest;
nodes(end).y = yTest;
nodes(end).parent = nearestNode;
% Check if the goal has been reached
if sqrt((nodes(end).x-goalPos(1))^2 + (nodes(end).y-goalPos(2))^2) < stepSize
break;
end
end
% Plot the obstacles
figure(1)
hold on
axis([xMin xMax yMin yMax])
for i = 1:size(obs,1)
rectangle('Position',[obs(i,1)-obs(i,3), obs(i,2)-obs(i,3), 2*obs(i,3), 2*obs(i,3)], 'Curvature', [1,1], 'FaceColor', 'r')
end
% Plot the tree
for i = 2:length(nodes)
x = [nodes(i).x, nodes(nodes(i).parent).x];
y = [nodes(i).y, nodes(nodes(i).parent).y];
plot(x,y,'k')
end
% Find the path from start to goal
path = [nodes(end).x, nodes(end).y];
while nodes(end).parent ~= 0
endNode = nodes(end);
path = [endNode.x, endNode.y; path];
endNode = nodes(endNode.parent);
end
path = [startPos; path];
% Plot the path
plot(path(:,1), path(:,2), 'b', 'LineWidth', 2)
```
这段代码会生成一个基于 RRT 算法的路径规划过程,其中包括环境参数、机器人参数、起始位置、目标位置和 RRT 参数。代码将生成一个随机树,以搜索从起始位置到目标位置的路径。最终,该代码会绘制出路径和环境。
阅读全文