nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1),经过这层卷积层,输出大小有何变化
时间: 2024-05-20 12:14:22 浏览: 48
假设输入大小为 `(batch_size, 256, H_in, W_in)`,其中 `batch_size` 表示批量大小, `H_in` 和 `W_in` 分别表示输入的高度和宽度。该卷积层的超参数为 `in_channels=256`(输入通道数)、`out_channels=128`(输出通道数)、`kernel_size=3`(卷积核大小)、`stride=2`(步长大小)和 `padding=1`(填充大小)。
根据转置卷积层的计算方式,输出大小可以通过以下公式计算:
$H_{out} = (H_{in}-1) \times stride - 2 \times padding + kernel\_size$
$W_{out} = (W_{in}-1) \times stride - 2 \times padding + kernel\_size$
因此,该卷积层的输出大小为 `(batch_size, 128, H_out, W_out)`,其中 `H_out = (H_in-1) * stride - 2 * padding + kernel_size = (H_in-1) * 2 - 2 * 1 + 3 = 2H_in - 1`, `W_out = (W_in-1) * stride - 2 * padding + kernel_size = (W_in-1) * 2 - 2 * 1 + 3 = 2W_in - 1`。所以,该卷积层输出的特征图的高度和宽度都增加了2倍,分别为输入大小的2倍减1。
相关问题
基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码
训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法:
1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。
2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。
3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。
以下是代码的修改建议:
1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。
2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。
3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。
4. 增加正则化:可以使用 L2 正则化来防止过拟合。
修改后的代码如下:
```
import torch.nn.functional as F
import torchvision.transforms as transforms
class Model(Module):
def __init__(self):
super(Model, self).__init__()
self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1)
self.bn1_1 = nn.BatchNorm2d(64)
self.relu1_1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4)
self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1)
self.bn2_1 = nn.BatchNorm2d(128)
self.relu2_1 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1)
self.bn3_1 = nn.BatchNorm2d(256)
self.relu3_1 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3))
self.bn4_1 = nn.BatchNorm2d(512)
self.relu4_1 = nn.ReLU()
self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn4_2 = nn.BatchNorm2d(512)
self.relu4_2 = nn.ReLU()
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_1 = nn.BatchNorm2d(512)
self.relu5_1 = nn.ReLU()
self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_2 = nn.BatchNorm2d(512)
self.relu5_2 = nn.ReLU()
self.pool5 = nn.AdaptiveAvgPool2d(5)
self.dropout1 = nn.Dropout(p=0.3)
self.fc1=nn.Linear(512*5*5, 1024)
self.relu6=nn.ReLU()
self.dropout2 = nn.Dropout(p=0.2)
self.fc2=nn.Linear(1024, 141)
# 数据增强
self.transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.pool1(x)
x = self.conv2_1(x)
x = self.bn2_1(x)
x = self.relu2_1(x)
x = self.pool2(x)
x = self.conv3_1(x)
x = self.bn3_1(x)
x = self.relu3_1(x)
x = self.pool3(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu4_2(x)
x = self.pool4(x)
x = self.conv5_1(x)
x = self.bn5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.bn5_2(x)
x = self.relu5_2(x)
x = self.pool5(x)
x = x.view(-1, 512*5*5)
x = self.dropout1(x)
x = self.fc1(x)
x = self.relu6(x)
x = self.dropout2(x)
x = self.fc2(x)
return x
```
在训练时,可以使用如下代码来进行数据增强:
```
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=model.transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
```
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
阅读全文