def __init__(self, in_channels, out_channels, stride): super(RestNetBasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) ———————————————— 逐行解读
时间: 2023-10-02 17:07:45 浏览: 103
Residual-Networks.zip_-baijiahao_47W_python residual_python残差网络
这段代码是 `RestNetBasicBlock` 类的构造函数 `__init__`。下面逐行解读这段代码的作用:
1. `super(RestNetBasicBlock, self).__init__()`:调用父类 `nn.Module` 的构造函数,确保该类继承自 `nn.Module` 并正确初始化。
2. `self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)`:定义一个卷积层 `conv1`,输入通道数为 `in_channels`,输出通道数为 `out_channels`,卷积核大小为 3x3,步幅为 `stride`,填充为 1。
3. `self.bn1 = nn.BatchNorm2d(out_channels)`:定义一个批归一化层 `bn1`,输入通道数为 `out_channels`,用于对 `conv1` 的输出进行批归一化。
4. `self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)`:定义第二个卷积层 `conv2`,输入通道数为 `out_channels`,输出通道数为 `out_channels`(与前一层的输出通道数相同),卷积核大小为 3x3,步幅为 `stride`,填充为 1。
5. `self.bn2 = nn.BatchNorm2d(out_channels)`:定义第二个批归一化层 `bn2`,输入通道数为 `out_channels`,用于对 `conv2` 的输出进行批归一化。
这段代码的作用是创建了两个卷积层和两个批归一化层,并将它们作为类的属性保存起来,用于之后的前向传播过程。
阅读全文