解释 def __init__(self, in_channels, out_channels, kernel_size, stride, padding, residual=True): super(Conv2dResLayer, self).__init__() self.conv2d_layer = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, padding_mode='reflect'), nn.BatchNorm2d(out_channels), nn.ReLU()) if not residual: self.residual = lambda x: 0 elif in_channels == out_channels: self.residual = lambda x: x else: self.residual = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1), nn.BatchNorm2d(out_channels))
时间: 2023-04-07 17:05:08 浏览: 214
这是一个用于定义卷积神经网络中的残差层的代码。其中,in_channels表示输入通道数,out_channels表示输出通道数,kernel_size表示卷积核大小,stride表示步长,padding表示填充大小,residual表示是否使用残差连接。如果residual为True,且输入通道数等于输出通道数,则使用恒等映射作为残差连接;否则,使用一个卷积层和一个批归一化层作为残差连接。如果residual为False,则不使用残差连接。
相关问题
请帮我编写下面网络的前向传播class UResNet_P(nn.Module):#ResNet_P编码器,参数量0.60M,595355 #def __init__(self): def __init__(self,in_channels=3, out_channels=3, init_features=32): super(UResNet_P,self).__init__() self.edge_detector=Edge_Detector() features = init_features self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder1 = conv_block(in_channels, features) self.encoder2 = conv_block(features, features * 2) self.encoder3 = conv_block(features * 2, features * 4, dropout=True) self.residual_layer=self.stack_layer(Res_Block,16) self.conv=conv_block(features * 4, features * 8, dropout=True) self.upconv3 = nn.ConvTranspose2d(features * 8, features * 4, kernel_size=2, stride=2) self.decoder3 = conv_block(features * 8, features * 4) self.upconv2 = nn.ConvTranspose2d(features * 4, features * 2, kernel_size=2, stride=2) # 128 => 64 self.decoder2 = conv_block(features * 4, features * 2) self.upconv1 = nn.ConvTranspose2d(features * 2, features, kernel_size=2, stride=2) # 64 => 32 self.decoder1 = conv_block(features * 2, features) self.conv = nn.Conv2d(in_channels=features, out_channels=out_channels, kernel_size=1) self.input = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1, bias=False) self.output = nn.Conv2d(in_channels=32, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False) self.relu=nn.ReLU(inplace=True)
好的,这是 `UResNet_P` 网络的前向传播代码:
```python
import torch.nn as nn
class UResNet_P(nn.Module):
def __init__(self, in_channels=3, out_channels=3, init_features=32):
super(UResNet_P, self).__init__()
self.edge_detector = Edge_Detector()
features = init_features
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder1 = conv_block(in_channels, features)
self.encoder2 = conv_block(features, features * 2)
self.encoder3 = conv_block(features * 2, features * 4, dropout=True)
self.residual_layer = self.stack_layer(Res_Block, 16)
self.conv = conv_block(features * 4, features * 8, dropout=True)
self.upconv3 = nn.ConvTranspose2d(features * 8, features * 4, kernel_size=2, stride=2)
self.decoder3 = conv_block(features * 8, features * 4)
self.upconv2 = nn.ConvTranspose2d(features * 4, features * 2, kernel_size=2, stride=2)
self.decoder2 = conv_block(features * 4, features * 2)
self.upconv1 = nn.ConvTranspose2d(features * 2, features, kernel_size=2, stride=2)
self.decoder1 = conv_block(features * 2, features)
self.conv = nn.Conv2d(in_channels=features, out_channels=out_channels, kernel_size=1)
self.input = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1, bias=False)
self.output = nn.Conv2d(in_channels=32, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
edge = self.edge_detector(x)
x = self.input(x)
x = self.relu(x)
e1 = self.encoder1(x)
e2 = self.encoder2(self.pool(e1))
e3 = self.encoder3(self.pool(e2))
r = self.residual_layer(e3)
d = self.conv(torch.cat((e3, self.upconv3(r)), dim=1))
d = self.decoder3(d)
d = self.upconv2(d)
d = self.decoder2(torch.cat((e2, d), dim=1))
d = self.upconv1(d)
d = self.decoder1(torch.cat((e1, d), dim=1))
out = self.conv(d)
out = self.relu(out)
out = self.output(self.pool(out))
return out
```
这个网络包含了很多层,但是大部分都是相同的结构:卷积层 + ReLU 激活函数,或者是反卷积层。我这里只列出了 `conv_block` 和 `Res_Block` 的代码,因为这两个函数较为复杂,其他层都比较简单。你需要自己实现这两个函数,或者是从其他地方获取它们的代码。
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)#调用Conv_ReLU_Block,重复18个Conv_ReLU_Block模块 self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#通道层放大 self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)#通道层缩小 self.relu = nn.ReLU(inplace=True)#19-22初始化网络层 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n))
这段代码是用 PyTorch 搭建的一个卷积神经网络模型,其名称为 Net。该模型包含了一个残差层(residual_layer),其中使用了 Conv_ReLU_Block 模块,该模块被重复调用了 18 次。此外,该模型还包含了一个输入层(input),一个输出层(output)和一个 ReLU 激活函数层(relu)。这些层被初始化为 nn.Conv2d、nn.ReLU 和 nn.ReLU(inplace=True) 类型。最后,该代码还对网络中的所有卷积层进行了权重初始化,使用的是均值为 0,方差为 2/n 的正态分布。
阅读全文