对比YOLOv7与YOLOv5
时间: 2024-05-01 11:07:10 浏览: 171
YOLOv7 从GitHub上下载下来的代码,根据之前的5版本对比debug了一下,可以测试本地视频了
YOLOv7是YOLOv5的改进版本,主要的改进包括:
1.模型结构的改进:
YOLOv7在YOLOv5的基础上进一步优化了模型结构,加入了多种新特性,如:SE结构、CBAM结构、空间注意力机制等。这些特性可以提高模型的表现力和泛化能力,在检测任务中具有较好的效果。
2.训练策略的改进:
YOLOv7在训练策略上进行了改进,采用了类似于PVT的策略,通过分阶段训练,逐步提高模型的精度和稳定性。同时,YOLOv7还采用了一些新的trick,如:mixup数据增强、Label Smoothing等,可以有效地提高模型的泛化能力和鲁棒性。
3.速度和精度的平衡:
YOLOv7在速度和精度上进行了平衡,保持了YOLO系列一贯的快速检测速度,同时在精度上也有所提升,可以在目标检测任务中达到较好的表现。
综上所述,YOLOv7是YOLOv5的改进版本,相比于YOLOv5,在模型结构、训练策略、速度和精度等方面都有所提升,是目前较为先进的目标检测算法之一。
阅读全文