python代码用遗传算法求解车辆路径规划问题
时间: 2023-09-08 09:16:22 浏览: 100
车辆路径规划问题是一种NP难问题,遗传算法是一种常用的全局优化算法,可以用来解决这类问题。下面是一个基于Python的遗传算法求解车辆路径规划问题的代码示例:
```python
import random
# 路径规划问题的目标函数
def fitness(route, distance_matrix):
total_distance = 0
for i in range(len(route) - 1):
total_distance += distance_matrix[route[i]][route[i+1]]
return total_distance
# 遗传算法求解路径规划问题
def genetic_algorithm(distance_matrix, population_size=100, max_generation=1000, mutation_rate=0.01):
# 初始化种群
population = []
for i in range(population_size):
route = list(range(1, len(distance_matrix)))
random.shuffle(route)
population.append(route)
# 迭代求解
for generation in range(max_generation):
# 计算适应度
fitness_values = [fitness(route, distance_matrix) for route in population]
best_fitness = min(fitness_values)
best_route = population[fitness_values.index(best_fitness)]
# 输出每一代的最优解
print("Generation %d: shortest distance = %d" % (generation, best_fitness))
# 选择
parents = []
for i in range(population_size):
index1 = random.randint(0, population_size-1)
index2 = random.randint(0, population_size-1)
if fitness_values[index1] < fitness_values[index2]:
parents.append(population[index1])
else:
parents.append(population[index2])
# 交叉
children = []
for i in range(population_size):
parent1 = parents[random.randint(0, population_size-1)]
parent2 = parents[random.randint(0, population_size-1)]
child = [0] * len(distance_matrix)
start = random.randint(0, len(distance_matrix)-1)
end = random.randint(0, len(distance_matrix)-1)
if start > end:
start, end = end, start
child[start:end+1] = parent1[start:end+1]
for j in range(len(parent2)):
if parent2[j] not in child:
for k in range(len(child)):
if child[k] == 0:
child[k] = parent2[j]
break
children.append(child)
# 变异
for i in range(population_size):
if random.random() < mutation_rate:
index1 = random.randint(0, len(distance_matrix)-1)
index2 = random.randint(0, len(distance_matrix)-1)
children[i][index1], children[i][index2] = children[i][index2], children[i][index1]
population = children
# 返回最优解
fitness_values = [fitness(route, distance_matrix) for route in population]
best_fitness = min(fitness_values)
best_route = population[fitness_values.index(best_fitness)]
return best_route, best_fitness
```
在这个代码中,`distance_matrix`是一个二维数组,表示每个城市之间的距离。`population_size`是种群大小,`max_generation`是最大迭代次数,`mutation_rate`是变异率。函数`fitness`计算一个路径的总距离。函数`genetic_algorithm`实现了遗传算法的主要过程:初始化种群、计算适应度、选择、交叉、变异。整个算法迭代`max_generation`次,每一代输出当前最优解的距离。最后返回最优解的路径和距离。
阅读全文