匈牙利算法代码python
时间: 2023-09-07 13:17:18 浏览: 108
下面是一个基于Python的匈牙利算法实现的代码示例:
```python
def max_match(graph):
# 初始化匹配状态
match = {}
for u in graph.keys():
match[u] = None
for v in graph.keys():
# 如果该顶点还没有匹配,则从该顶点开始查找增广路
if match[v] is None:
# 初始化标记数组和搜索队列
visited = {}
queue = []
for u in graph.keys():
visited[u] = False
queue.append(v)
visited[v] = True
# 使用广度优先搜索查找增广路
found = False
while len(queue) > 0:
u = queue.pop(0)
for w in graph[u]:
if not visited[w]:
visited[w] = True
if match[w] is None:
# 找到增广路,更新匹配状态
match[w] = u
match[u] = w
found = True
break
else:
# 将已匹配的顶点加入搜索队列
queue.append(match[w])
if found:
break
# 返回最大匹配数
count = 0
for u in graph.keys():
if match[u] is not None:
count += 1
return count
```
其中,`graph`是一个字典,表示二分图中每个顶点的邻接表。例如,若二分图中有顶点`u`和`v`,它们之间有一条边,则`graph`应该包含如下的键值对:
```
graph = {
'u': ['v'],
'v': ['u']
}
```
该算法的时间复杂度为$O(mn)$,其中$m$和$n$分别为二分图中的顶点数和边数。
阅读全文