if not (1 <= stride <= 3):

时间: 2023-08-09 12:09:37 浏览: 32
这是一个Python的条件语句,意思是如果步长stride不在1到3的范围内(不包括1和3),则执行后续的代码块。可以这样写: ``` if stride < 1 or stride > 3: # 执行语句块 ``` 其中,`or`表示或者,只要有一个条件满足就返回True。也可以使用`not in`来判断步长是否在指定范围内: ``` if stride not in range(1, 4): # 执行语句块 ``` 其中,`range(1, 4)`表示从1到3的范围(不包括4)。
相关问题

请分析这段代码class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) # Squeeze-and-excitation if has_se: self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) else: self.se = None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if (in_chs == out_chs and self.stride == 1): self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): residual = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(residual) return x

这段代码定义了一个名为GhostBottleneck的类,继承自nn.Module。该类实现了一个带有可选Squeeze-and-excitation (SE)的Ghost bottleneck。 在初始化方法中,它接受一些参数,包括输入通道数(in_chs)、中间通道数(mid_chs)、输出通道数(out_chs)、深度卷积核大小(dw_kernel_size)、步长(stride)、激活函数(act_layer)和SE比率(se_ratio)。它首先判断是否需要SE操作,并保存步长。然后,它定义了以下组件: - ghost1: 一个GhostModule,用于进行点卷积扩展,将输入通道数扩展到中间通道数。 - conv_dw和bn_dw: 如果步长大于1,则定义了一个深度卷积层和对应的批归一化层,用于进行深度卷积操作。 - se: 如果需要SE操作,则定义了一个SqueezeExcite模块,用于进行Squeeze-and-excitation操作。 - ghost2: 一个GhostModule,用于将中间通道数缩减到输出通道数。 - shortcut: 根据输入通道数和输出通道数以及步长的不同情况,定义了不同的shortcut结构。如果输入通道数等于输出通道数且步长为1,则shortcut为空;否则,shortcut由一系列卷积层和批归一化层组成。 在前向传播方法中,首先保存输入的残差,然后按照以下顺序进行操作: - 使用ghost1进行第一个ghost bottleneck操作,将输入x转换为中间特征x。 - 如果步长大于1,则使用conv_dw和bn_dw进行深度卷积操作。 - 如果需要SE操作,则使用se进行Squeeze-and-excitation操作。 - 使用ghost2进行第二个ghost bottleneck操作,将中间特征x转换为输出特征x。 - 将残差与shortcut结果相加得到最终输出x。 该GhostBottleneck类实现了一种特殊的残差块结构,通过使用GhostModule和深度卷积、SE等操作,实现了通道数的扩展和缩减,并在残差连接中处理了不同通道数和步长的情况。这种结构常用于一些深度学习模型中的卷积层。

为以下每句代码做注释:class Bottleneck(nn.Module): expansion = 4 def init(self, in_channel, out_channel, stride=1, downsample=None): super(Bottleneck, self).init() self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False) # squeeze channels self.bn1 = nn.BatchNorm2d(out_channel) self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1) self.bn2 = nn.BatchNorm2d(out_channel) self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1, stride=1, bias=False) # unsqueeze channels self.bn3 = nn.BatchNorm2d(out_channel * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += identity out = self.relu(out) return out

这段代码定义了一个名为 Bottleneck 的类,继承自 nn.Module。Bottleneck 是 ResNet 中的一种基础块,由三个卷积层组成。 - expansion = 4:用于扩展通道数,即输出通道数是输入通道数的 expansion 倍。 - def __init__(self, in_channel, out_channel, stride=1, downsample=None):构造函数,传入参数为输入通道数、输出通道数、步幅和下采样。 - super(Bottleneck, self).__init__():调用父类的构造函数。 - self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False):第一个卷积层,使用 1x1 的卷积核进行降维,减少通道数。 - self.bn1 = nn.BatchNorm2d(out_channel):第一个 BatchNormalization 层。 - self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1):第二个卷积层,使用 3x3 的卷积核进行特征提取。 - self.bn2 = nn.BatchNorm2d(out_channel):第二个 BatchNormalization 层。 - self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1, stride=1, bias=False):第三个卷积层,使用 1x1 的卷积核进行升维,扩展通道数。 - self.bn3 = nn.BatchNorm2d(out_channel * self.expansion):第三个 BatchNormalization 层。 - self.relu = nn.ReLU(inplace=True):ReLU 激活函数。 - self.downsample = downsample:下采样函数,用于调整输入和输出的维度。 - def forward(self, x):前向传播函数,传入参数为输入数据 x。 - identity = x:将输入数据保存下来。 - if self.downsample is not None: identity = self.downsample(x):如果下采样函数不为空,则使用下采样函数调整输入数据。 - out = self.conv1(x):第一个卷积层的前向传播。 - out = self.bn1(out):第一个 BatchNormalization 层的前向传播。 - out = self.relu(out):ReLU 激活函数的前向传播。 - out = self.conv2(out):第二个卷积层的前向传播。 - out = self.bn2(out):第二个 BatchNormalization 层的前向传播。 - out = self.relu(out):ReLU 激活函数的前向传播。 - out = self.conv3(out):第三个卷积层的前向传播。 - out = self.bn3(out):第三个 BatchNormalization 层的前向传播。 - out += identity:将输入数据和经过卷积后的数据相加,实现残差连接。 - out = self.relu(out):ReLU 激活函数的前向传播。 - return out:返回经过 Bottleneck 块处理后的数据。

相关推荐

代码解析: class BasicBlock(nn.Layer): expansion = 1 def init(self, in_channels, channels, stride=1, downsample=None): super().init() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def init(self, in_channels=3, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2, 1, 2, 1, 1]): self.inplanes = 32 super(ResNet45, self).init() self.conv1 = nn.Conv2D( in_channels, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) self.out_channels = 512 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) return x

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类

解释每一句class RepVggBlock(nn.Layer): def init(self, ch_in, ch_out, act='relu', alpha=False): super(RepVggBlock, self).init() self.ch_in = ch_in self.ch_out = ch_out self.conv1 = ConvBNLayer( ch_in, ch_out, 3, stride=1, padding=1, act=None) self.conv2 = ConvBNLayer( ch_in, ch_out, 1, stride=1, padding=0, act=None) self.act = get_act_fn(act) if act is None or isinstance(act, ( str, dict)) else act if alpha: self.alpha = self.create_parameter( shape=[1], attr=ParamAttr(initializer=Constant(value=1.)), dtype="float32") else: self.alpha = None def forward(self, x): if hasattr(self, 'conv'): y = self.conv(x) else: if self.alpha: y = self.conv1(x) + self.alpha * self.conv2(x) else: y = self.conv1(x) + self.conv2(x) y = self.act(y) return y def convert_to_deploy(self): if not hasattr(self, 'conv'): self.conv = nn.Conv2D( in_channels=self.ch_in, out_channels=self.ch_out, kernel_size=3, stride=1, padding=1, groups=1) kernel, bias = self.get_equivalent_kernel_bias() self.conv.weight.set_value(kernel) self.conv.bias.set_value(bias) self.delattr('conv1') self.delattr('conv2') def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) if self.alpha: return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + self.alpha * bias1x1 else: return kernel3x3 + self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + bias1x1 def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 kernel = branch.conv.weight running_mean = branch.bn._mean running_var = branch.bn._variance gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn._epsilon std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) return kernel * t, beta - running_mean * gamma / std

class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(input_nc, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, input_nc, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(input_nc, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, input_nc, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence += [nn.Sigmoid()] def forward(self, input): offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence = sequence1 + self.sequence self.model = nn.Sequential(*sequence) return self.model(input),上述代码出现问题:TypeError: torch.cuda.FloatTensor is not a Module subclass,如何修改

最新推荐

recommend-type

pyzmq-15.1.0-py2.7-macosx-10.6-intel.egg

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

51单片机库(基于12M晶振).zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

CIC Compiler v4.0 LogiCORE IP Product Guide

CIC Compiler v4.0 LogiCORE IP Product Guide是Xilinx Vivado Design Suite的一部分,专注于Vivado工具中的CIC(Cascaded Integrator-Comb滤波器)逻辑内核的设计、实现和调试。这份指南涵盖了从设计流程概述、产品规格、核心设计指导到实际设计步骤的详细内容。 1. **产品概述**: - CIC Compiler v4.0是一款针对FPGA设计的专业IP核,用于实现连续积分-组合(CIC)滤波器,常用于信号处理应用中的滤波、下采样和频率变换等任务。 - Navigating Content by Design Process部分引导用户按照设计流程的顺序来理解和操作IP核。 2. **产品规格**: - 该指南提供了Port Descriptions章节,详述了IP核与外设之间的接口,包括输入输出数据流以及可能的控制信号,这对于接口配置至关重要。 3. **设计流程**: - General Design Guidelines强调了在使用CIC Compiler时的基本原则,如选择合适的滤波器阶数、确定时钟配置和复位策略。 - Clocking和Resets章节讨论了时钟管理以及确保系统稳定性的关键性复位机制。 - Protocol Description部分介绍了IP核与其他模块如何通过协议进行通信,以确保正确的数据传输。 4. **设计流程步骤**: - Customizing and Generating the Core讲述了如何定制CIC Compiler的参数,以及如何将其集成到Vivado Design Suite的设计流程中。 - Constraining the Core部分涉及如何在设计约束文件中正确设置IP核的行为,以满足具体的应用需求。 - Simulation、Synthesis and Implementation章节详细介绍了使用Vivado工具进行功能仿真、逻辑综合和实施的过程。 5. **测试与升级**: - Test Bench部分提供了一个演示性的测试平台,帮助用户验证IP核的功能。 - Migrating to the Vivado Design Suite和Upgrading in the Vivado Design Suite指导用户如何在新版本的Vivado工具中更新和迁移CIC Compiler IP。 6. **支持与资源**: - Documentation Navigator and Design Hubs链接了更多Xilinx官方文档和社区资源,便于用户查找更多信息和解决问题。 - Revision History记录了IP核的版本变化和更新历史,确保用户了解最新的改进和兼容性信息。 7. **法律责任**: - 重要Legal Notices部分包含了版权声明、许可条款和其他法律注意事项,确保用户在使用过程中遵循相关规定。 CIC Compiler v4.0 LogiCORE IP Product Guide是FPGA开发人员在使用Vivado工具设计CIC滤波器时的重要参考资料,提供了完整的IP核设计流程、功能细节及技术支持路径。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB导入Excel最佳实践:效率提升秘籍

![MATLAB导入Excel最佳实践:效率提升秘籍](https://csdn-blog-1258434200.cos.ap-shanghai.myqcloud.com/images/20190310145705.png) # 1. MATLAB导入Excel概述 MATLAB是一种强大的技术计算语言,它可以轻松地导入和处理来自Excel电子表格的数据。通过MATLAB,工程师、科学家和数据分析师可以高效地访问和操作Excel中的数据,从而进行各种分析和建模任务。 本章将介绍MATLAB导入Excel数据的概述,包括导入数据的目的、优势和基本流程。我们将讨论MATLAB中用于导入Exce
recommend-type

android camera2 RggbChannelVector

`RggbChannelVector`是Android Camera2 API中的一个类,用于表示图像传感器的颜色滤波器阵列(CFA)中的红色、绿色和蓝色通道的增益。它是一个四维向量,包含四个浮点数,分别表示红色、绿色第一通道、绿色第二通道和蓝色通道的增益。在使用Camera2 API进行图像处理时,可以使用`RggbChannelVector`来控制图像的白平衡。 以下是一个使用`RggbChannelVector`进行白平衡调整的例子: ```java // 获取当前的CaptureResult CaptureResult result = ...; // 获取当前的RggbChan
recommend-type

G989.pdf

"这篇文档是关于ITU-T G.989.3标准,详细规定了40千兆位无源光网络(NG-PON2)的传输汇聚层规范,适用于住宅、商业、移动回程等多种应用场景的光接入网络。NG-PON2系统采用多波长技术,具有高度的容量扩展性,可适应未来100Gbit/s或更高的带宽需求。" 本文档主要涵盖了以下几个关键知识点: 1. **无源光网络(PON)技术**:无源光网络是一种光纤接入技术,其中光分配网络不包含任何需要电源的有源电子设备,从而降低了维护成本和能耗。40G NG-PON2是PON技术的一个重要发展,显著提升了带宽能力。 2. **40千兆位能力**:G.989.3标准定义的40G NG-PON2系统提供了40Gbps的传输速率,为用户提供超高速的数据传输服务,满足高带宽需求的应用,如高清视频流、云服务和大规模企业网络。 3. **多波长信道**:NG-PON2支持多个独立的波长信道,每个信道可以承载不同的服务,提高了频谱效率和网络利用率。这种多波长技术允许在同一个光纤上同时传输多个数据流,显著增加了系统的总容量。 4. **时分和波分复用(TWDM)**:TWDM允许在不同时间间隔内分配不同波长,为每个用户分配专用的时隙,从而实现多个用户共享同一光纤资源的同时传输。 5. **点对点波分复用(WDMPtP)**:与TWDM相比,WDMPtP提供了一种更直接的波长分配方式,每个波长直接连接到特定的用户或设备,减少了信道之间的干扰,增强了网络性能和稳定性。 6. **容量扩展性**:NG-PON2设计时考虑了未来的容量需求,系统能够灵活地增加波长数量或提高每个波长的速率,以适应不断增长的带宽需求,例如提升至100Gbit/s或更高。 7. **应用场景**:40G NG-PON2不仅用于住宅宽带服务,还广泛应用于商业环境中的数据中心互联、企业网络以及移动通信基站的回传,为各种业务提供了高性能的接入解决方案。 8. **ITU-T标准**:作为国际电信联盟电信标准化部门(ITU-T)的一部分,G.989.3建议书为全球的电信运营商和设备制造商提供了一套统一的技术规范,确保不同厂商的产品和服务之间的兼容性和互操作性。 9. **光接入网络**:G.989.3标准是接入网络技术的一个重要组成部分,它与光纤到户(FTTH)、光纤到楼(FTTB)等光接入方案相结合,构建了高效、可靠的宽带接入基础设施。 ITU-T G.989.3标准详细规定了40G NG-PON2系统的传输汇聚层,为现代高速网络接入提供了强大的技术支持,推动了光通信技术的持续进步。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB导入Excel错误处理:故障排除无忧

![MATLAB导入Excel错误处理:故障排除无忧](https://img-blog.csdn.net/20180411112646840) # 1. MATLAB导入Excel概述** MATLAB提供了一系列函数来导入Excel数据,包括`xlsread`、`readtable`和`importdata`。这些函数允许用户轻松地将Excel工作簿中的数据加载到MATLAB工作区中。 导入Excel数据时,用户需要指定Excel文件路径和要导入的数据范围。MATLAB支持绝对路径和相对路径,但如果路径中包含空格或特殊字符,则需要使用引号将其引起来。此外,MATLAB可以自动检测数据类
recommend-type

verilog中抽样判决

在Verilog中,抽样判决是将接收到的模拟信号转换为数字信号的过程。在QPSK解调中,抽样判决是将接收到的基带信号恢复为数字基带信号的过程。抽样判决的实现通常使用比较器和阈值电路。具体步骤如下: 1.将接收到的基带信号与本地载波进行相乘,得到解调后的QPSK信号。 2.将解调后的QPSK信号输入到比较器中,与阈值进行比较。 3.根据比较结果,输出数字信号。 以下是一个简单的Verilog代码示例,用于实现抽样判决: ```verilog module sampler( input clk, input [7:0] qpsk_in, output reg [7