对于如图A.29所示的带权有向图,采用狄克斯特拉算法求出从顶点0到其他各顶点的最短路径及其长度,要求按求出最短路径的先后顺序给出结果。

时间: 2024-02-19 11:01:50 浏览: 25
按照Dijkstra算法的执行顺序,依次求得的最短路径及其长度如下: 1. 0 → 1,长度为1 2. 0 → 2,长度为3 3. 0 → 4 → 3,长度为6 4. 0 → 4,长度为4 5. 0 → 5 → 4,长度为7 因此,从顶点0到其他顶点的最短路径及其长度依次为: - 0 → 1,长度为1 - 0 → 2,长度为3 - 0 → 4 → 3,长度为6 - 0 → 4,长度为4 - 0 → 5 → 4,长度为7
相关问题

采用狄克斯特拉算法(dijkstra),输出下面有向带权图g中从顶点0到其它各顶点的最短路径和最短路径长度。

### 回答1: 好的,下面是使用狄克斯特拉算法输出有向带权图g中从顶点0到其它各顶点的最短路径和最短路径长度的步骤: 1. 初始化:将起点0到各个顶点的最短路径长度初始化为无穷大,将起点0到自身的最短路径长度初始化为0。 2. 选取起点0,将其加入已访问集合中。 3. 遍历起点0的所有邻接点,更新它们到起点0的最短路径长度。 4. 从未访问集合中选取距离起点0最近的顶点,将其加入已访问集合中。 5. 遍历新加入已访问集合中的顶点的所有邻接点,更新它们到起点0的最短路径长度。 6. 重复步骤4和5,直到所有顶点都被加入已访问集合中。 7. 输出起点0到各个顶点的最短路径和最短路径长度。 希望这个回答能够帮到您! ### 回答2: 采用狄克斯特拉算法可以求解有向带权图g中从顶点0到其它各顶点的最短路径和最短路径长度。 首先,我们需要定义一个数组dis来存储从顶点0到各个顶点的最短路径长度,以及一个数组book用来标记每个顶点是否已经加入最短路径集合中。 接下来,我们从顶点0开始,把其它所有顶点的dis值初始化为无穷大,即表示当前还没有计算出最短路径,同时将book[0]标记为1表示已经加入最短路径集合中。 然后,我们遍历与0相邻的所有顶点,更新它们的dis值。对于每个相邻顶点i,如果当前的dis[i]大于dis[0]+g[0][i],就更新为dis[0]+g[0][i],表示经过顶点0到达顶点i的距离更短。同时,将book[i]标记为1,表示已经加入最短路径集合中。 接着,我们从dis数组中选择一个未加入最短路径集合中且dis值最小的顶点k,将其加入最短路径集合中,并遍历所有与k相邻的顶点,更新它们的dis值。对于每个相邻顶点j,如果当前的dis[j]大于dis[k]+g[k][j],就更新为dis[k]+g[k][j],表示经过顶点k到达顶点j的距离更短。同时,将book[j]标记为1,表示已经加入最短路径集合中。 最后,重复上述步骤,直到所有顶点都加入最短路径集合中为止。此时,dis数组中存储的就是从顶点0到其它各顶点的最短路径长度,路径可以通过记录每个顶点的前驱顶点来得到。 通过狄克斯特拉算法,我们可以很快地求解有向带权图g中从顶点0到其它各顶点的最短路径和最短路径长度,时间复杂度为O(n^2)。 ### 回答3: 狄克斯特拉算法是典型的单源最短路径算法,用于解决带权有向图中某一个顶点到其它顶点的最短路径问题,算法步骤如下: 1. 初始化:源点s到达所有其他节点的最短距离为无穷大,s到达它本身的距离为0。 2. 通过贪心策略找到源点s到每个节点所需的最短路径。 3. 然后更新所有与这些节点相邻的节点的距离。 4. 从未标记的节点中选择距离最短的节点,标记该节点,并将所有与该节点相邻的未标记节点更新距离值。 5. 重复步骤4直到所有顶点都标记为止。 下面以以下有向带权图g作为例进行狄克斯特拉算法的过程: ![image.png](https://cdn.luogu.com.cn/upload/image_hosting/gw03vxwn.png) 假设我们要求从顶点0开始到达其他顶点的最短路径,初始化各顶点的最短距离: | 顶点 | 最短距离 | |:-:|:-:| | 0 | 0 | | 1 | ∞ | | 2 | ∞ | | 3 | ∞ | | 4 | ∞ | 首先选定源点0,对其相邻的节点进行更新: | 顶点 | 最短距离 | |:-:|:-:| | 0 | 0 | | 1 | 4 | | 2 | 3 | | 3 | 8 | | 4 | ∞ | 此时,距离最近的节点是顶点2,对其进行更新: | 顶点 | 最短距离 | |:-:|:-:| | 0 | 0 | | 1 | 4 | | 2 | 3 | | 3 | 6 | | 4 | 9 | 接下来更新节点1和节点3: | 顶点 | 最短距离 | |:-:|:-:| | 0 | 0 | | 1 | 4 | | 2 | 3 | | 3 | 6 | | 4 | 7 | 最后更新节点4: | 顶点 | 最短距离 | |:-:|:-:| | 0 | 0 | | 1 | 4 | | 2 | 3 | | 3 | 6 | | 4 | 7 | 从上表中,我们可以得出到达各个顶点的最短路径长度,如下表所示: | 顶点 | 最短路径长度 | |:-:|:-:| | 0 | 0 | | 1 | 4 | | 2 | 3 | | 3 | 6 | | 4 | 7 | 此时,顶点0到其他顶点的最短路径分别是: - 0 -> 1 -> 3 - 0 -> 2 -> 3 - 0 -> 2 -> 4 - 0 -> 2 - 0 综上所述,狄克斯特拉算法输出从顶点0到其他各顶点的最短路径和最短路径长度。

采用狄克斯特拉算法求带权有向图的最短路径

### 回答1: 狄克斯特拉算法是一种用于求解带权有向图最短路径的算法。其基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新其周围节点的距离。通过不断迭代,最终得到起点到所有节点的最短路径。 ### 回答2: 狄克斯特拉算法(Dijkstra's Algorithm)是一种用于求解带有权重的有向图的最短路径的算法。该算法的基本思想是通过不断更新起点到其他顶点的最短距离,从而找到起点到终点的最短路径。 具体步骤如下: 1. 创建一个集合S,用于存放已经找到最短路径的顶点,以及一个数组dist,用于存放起点到各个顶点的最短距离。初始时集合S为空,起点到其他顶点的距离为无穷大。 2. 将起点加入到集合S中,并将起点到自身的距离设为0。 3. 对于起点的邻居顶点,更新其距离。即对于起点的每个邻居顶点v,如果起点经过当前顶点u到达v的距离(dist[u]+weight[u][v])小于dist[v],则更新dist[v]为(dist[u]+weight[u][v])。 4. 从未加入集合S的顶点中选择距离起点最近的顶点u,并将其加入到集合S中。 5. 重复步骤3-4,直到所有顶点都加入集合S中,或者没有可更新的距离的顶点。 6. 根据dist数组,可以找到起点到任意顶点的最短距离。 需要注意的是,狄克斯特拉算法只适用于没有负权边的图,如果图中存在负权边,可以考虑使用其他算法如贝尔曼-福特算法(Bellman-Ford Algorithm)或弗洛伊德算法(Floyd-Warshall Algorithm)来求解最短路径。 总结起来,狄克斯特拉算法是一种通过不断更新起点到各个顶点的最短距离来求解带权有向图的最短路径的算法。它的时间复杂度为O(V^2),其中V为顶点个数。 ### 回答3: 狄克斯特拉算法(Dijkstra's algorithm)是一种用于解决带权有向图最短路径问题的算法。下面就以一个简单的例子来说明狄克斯特拉算法的具体步骤。 假设有一个带权有向图,其中包含了一些节点和边。我们要找到从起点到终点的最短路径,其中每条边都有一个权重值表示距离,路径上的权重之和就是路径的总距离。 狄克斯特拉算法的步骤如下: 1. 初始化。将起点的距离设置为0,其他节点的距离设置为无穷大。同时将起点标记为当前节点。 2. 更新距离。从起点出发,遍历所有与当前节点相邻的节点。如果通过当前节点到达这些相邻节点的距离比之前记录的距离更短,就更新这些节点的距离。重复这个步骤,直到遍历完所有节点。 3. 选择下一个节点。从尚未处理的节点中选择距离最小的节点,并标记为当前节点。 4. 重复步骤2和3,直到找到终点或者遍历完所有节点。 5. 最短路径还原。从终点开始,通过记录的距离和上一步选择的节点,依次反向找到起点,即可得到最短路径。 狄克斯特拉算法的时间复杂度是O(V^2),其中V是节点的数量。它适用于有向无环图和非负权重的情况。 总结以上就是用狄克斯特拉算法求解带权有向图最短路径的过程。

相关推荐

#include <stdio.h> #include <stdlib.h> const int N=12; //顶点个数 const int M=0; void Dijkstra(int n, int v, int dist[], int prev[], int c[][N+1]) { bool s[N+1]; // 顶点集合s //初始化 for (int i=1;i<=n;i++) { dist[i]=c[v][i]; // 从源到顶点i的最短特殊路径长度 s[i]=false; if(dist[i]==M) prev[i]=0; // 从源到顶点i的最短路径上前一个顶点 else prev[i]=v; } dist[v]=0; s[v]=true; for(int i=1;i<n;i++)//未用到i值,只是控制循环次数。 { int mindist=M; int u=v; // 找到具有最短特殊路长度的顶点u for (int j=1;j<=n;j++) { if ((!s[j])&&(dist[j]<mindist))//j点不在s集合中,且到源点的距离小于上一个点到源点的距离,就用u记录下该点 { u=j; mindist=dist[j]; } } s[u]=true;//将u点加入s集合 // 更新dist值 for(int j=1;j<=n;j++)//当s集合加入新点的时候需要更新dist[]和prev[] { if ((!s[j])&&(c[u][j]<M))//j点不在s集合中,且新点与j点相邻 { int newdist=dist[u]+c[u][j];//新点到源点的距离+新点到j点的距离 if (newdist<dist[j]) { dist[j]=newdist; prev[j]=u;//新点成了j的前驱点,表示此时从源点到j点经过u距离最短 } } } } } //输出最短路径 v源点,i终点, void Traceback(int v, int i, int prev[]) { // 源点等于终点时,即找出全部路径 if (v==i) { printf("%d",i); return; } Traceback(v,prev[i],prev); printf("->%d",i); } int main() { int dist[N+1]; // 从源到顶点i的最短特殊路径长度 int prev[N+1]; // 从源到顶点i的最短路径上前一个顶点 //带权有向图 int i,j,c[N+1][N+1]; printf("矩阵:\n"); for(i=0;i<N+1;i++) { for(j=0;j<N+1;j++) { c[i][j]=rand()%5; c[0][j]=j; c[i][0]=i; if(i==j||c[i][j]==0) c[i][j]=M; printf("%d ",c[i][j]); } printf("\n"); } //指定源点 int v; printf("请输入指定源点:"); scanf("%d",&v); // 狄克斯特拉算法的应用 Dijkstra(N,v, dist, prev, c); for(int i=1; i<=N; i++){ if(dist[i]!=M) { printf("源点到顶点%d的最短距离为:%d\n",i,dist[i]); printf("路径为:"); Traceback(v,i, prev); printf("\n"); } else printf("源点不能到顶点%d\n",i); } return 0; }

最新推荐

recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

主要为大家详细介绍了C++用Dijkstra算法求所有顶点之间的最短路径,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

带权图求最短路径课程设计报告

带权图求最短路径:如果给出了一个带权图,则可以试设计一个算法,求图中一个源点到其他各顶点的最短路径。试编写实现上述功能的程序。已知带权图,设计完成下列任务的一个算法: (1)用邻接表表示图; (2)按长度...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。下面这篇文章就给大家介绍关于C++用Dijkstra算法...
recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依