STM32F407触摸屏设置函数

时间: 2023-09-22 16:06:18 浏览: 113
### 回答1: 以下是基于HAL库的STM32F407触摸屏设置函数: ``` #include "stm32f4xx_hal.h" /* 定义触摸屏尺寸 */ #define TS_MIN_X 0 #define TS_MAX_X 239 #define TS_MIN_Y 0 #define TS_MAX_Y 319 /* 定义触摸屏校准参数 */ #define TS_X0 0x0000 #define TS_Y0 0x0000 #define TS_X1 0x00EF #define TS_Y1 0x013F /* 定义触摸屏SPI口 */ #define TS_SPI hspi1 /* 触摸屏初始化函数 */ void TS_Init(void) { uint8_t cmd = 0x00; uint8_t data = 0x00; /* 初始化SPI口 */ HAL_SPI_Init(&TS_SPI); /* 发送复位命令 */ cmd = 0x80; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); /* 延时10ms */ HAL_Delay(10); /* 发送查询命令 */ cmd = 0x90; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); /* 接收1个字节的返回值 */ HAL_SPI_Receive(&TS_SPI, &data, 1, 100); /* 判断返回值是否为0x01 */ if(data == 0x01) { /* 返回值正确,继续初始化 */ cmd = 0xCF; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xED; data = 0x64; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xE8; data = 0x40; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xCB; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xBA; data = 0x64; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xB8; data = 0x01; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xCC; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xB0; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xD0; data = 0x07; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xBD; data = 0x01; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xCA; data = 0x7F; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0x81; data = 0x3F; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xC5; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xD9; data = 0x80; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xF0; data = 0x01; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); cmd = 0xF6; data = 0x00; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); HAL_SPI_Transmit(&TS_SPI, &data, 1, 100); /* 发送查询命令 */ cmd = 0x90; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); /* 接收1个字节的返回值 */ HAL_SPI_Receive(&TS_SPI, &data, 1, 100); /* 判断返回值是否为0x00 */ if(data == 0x00) { /* 返回值正确,初始化完成 */ } } } /* 触摸屏读取函数 */ uint8_t TS_ReadXY(uint16_t *X, uint16_t *Y) { uint8_t cmd = 0x00; uint8_t data[4] = {0}; uint16_t x = 0; uint16_t y = 0; /* 发送查询命令 */ cmd = 0xD0; HAL_SPI_Transmit(&TS_SPI, &cmd, 1, 100); /* 接收4个字节的返回值 */ HAL_SPI_Receive(&TS_SPI, data, 4, 100); /* 解析返回值 */ x = ((data[1] & 0x0F) << 8) | data[2]; y = ((data[3] & 0x0F) << 8) | data[0]; /* 对坐标进行校准 */ *X = ((TS_MAX_X - TS_MIN_X) * (x - TS_X0)) / (TS_X1 - TS_X0) + TS_MIN_X; *Y = ((TS_MAX_Y - TS_MIN_Y) * (y - TS_Y0)) / (TS_Y1 - TS_Y0) + TS_MIN_Y; /* 判断坐标是否在有效范围内 */ if(*X < TS_MIN_X || *X > TS_MAX_X || *Y < TS_MIN_Y || *Y > TS_MAX_Y) { return 0; /* 坐标不在有效范围内,返回错误 */ } return 1; /* 读取成功,返回正确 */ } ``` 以上代码中,`TS_Init()`函数用于初始化触摸屏,`TS_ReadXY()`函数用于读取触摸屏坐标。需要注意的是,`TS_ReadXY()`函数返回值为`0`表示读取失败,返回值为`1`表示读取成功。 ### 回答2: STM32F407是一款32位微控制器,具有触摸屏功能。要使用STM32F407的触摸屏功能,我们首先需要进行设置。 触摸屏的设置函数包括硬件和软件两个方面。硬件方面,我们需要将触摸屏与STM32F407微控制器连接好。触摸屏一般会通过SPI或I2C接口与微控制器相连,我们需要设置好对应接口的引脚复用和时钟使能。这些设置一般在微控制器的GPIO和RCC模块中进行。 软件方面,我们需要使用相应的库函数进行触摸屏的设置。首先,我们需要初始化触摸屏控制器。这个控制器可以是STMPE811或其他触摸屏控制器。初始化函数一般包括设置触摸屏控制器的工作模式、触摸屏校准和触摸事件中断的使能等。具体的初始化函数可以在ST公司提供的库中找到。 另外,我们还需要设置触摸屏的中断服务函数和触摸事件处理函数。中断服务函数一般是用来处理外部触摸中断的,触摸事件处理函数用来处理触摸屏的各种事件,比如触摸、滑动等。这些函数可以根据实际需求进行编写。 最后,我们需要在主函数中调用相应的触摸屏设置函数,完成触摸屏的初始化和功能设置。通过这些设置,我们可以实现STM32F407与触摸屏的连接和交互,实现触摸屏的各种功能,如触摸、滑动等。 综上所述,要进行STM32F407触摸屏的设置,我们需要进行硬件和软件两方面的设置。硬件方面需要设置好触摸屏与微控制器的连接,软件方面需要使用相应的库函数进行触摸屏的初始化和功能设置,同时还需要编写中断服务函数和触摸事件处理函数。只有完成了这些设置,才能实现STM32F407与触摸屏的连接和交互。 ### 回答3: STM32F407的触摸屏设置函数是用于配置和控制与STM32F407微控制器连接的触摸屏的功能。 在STM32F407中,触摸屏控制器是通过嵌入的触摸屏控制器模块来实现的。以下是一些常用的设置函数: 1. 初始化触摸屏控制器:可以使用初始化函数来配置触摸屏的通信接口和参数,例如指定触摸屏的连接引脚、通信位率、分辨率等。 2. 校准触摸屏:触摸屏的位置精度可能会受到一些因素的影响,比如电阻屏的温度变化。校准函数可以通过在屏幕上显示一些校准点,然后让用户点击这些点来校准触摸屏的精度。 3. 读取触摸屏数据:通过读取函数可以获取用户在触摸屏上的操作数据,如位置和触摸状态(按下、释放、滑动等)。 4. 设置触摸屏中断:可以使用中断控制函数来配置当触摸屏按下或释放时触发的中断,从而在触摸屏事件发生时立即执行相应的用户代码。 5. 清除触摸屏中断标志:在处理完触摸屏中断时,可以使用清除标志函数来清除中断标志位,以便下一次中断能被正确触发。 6. 设置触摸屏灵敏度:有些触摸屏控制器可能支持设置灵敏度,以满足不同的应用需求。可以通过设置函数调整灵敏度等参数。 以上是一些常用的STM32F407触摸屏设置函数。通过使用这些函数,可以轻松地配置和控制与STM32F407微控制器连接的触摸屏的功能,实现各种触摸屏应用。
阅读全文

相关推荐

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自