将dataframe A 按照a,b, c, d 列, A的内容为字符串类型,先生成列的所有的排列组合, 按照新的组合的列,从A中拆分这些列不为空,其他列为空的子表
时间: 2024-09-30 15:09:48 浏览: 26
首先,你需要使用pandas库来操作DataFrame。在Python中,你可以通过`itertools.product`函数生成列的全排列,然后对每个排列应用条件筛选,只保留对应列非空的行。下面是一个简单的步骤说明:
1. 导入所需的库:
```python
import pandas as pd
from itertools import product
```
2. 创建DataFrame `A`,假设它已经包含字符串类型的'a', 'b', 'c', 'd'列:
```python
data = {'a': ['val1', 'val2', ''], 'b': ['val3', '', 'val4'], 'c': ['', 'val5', 'val6'], 'd': ['', '', '']}
df_A = pd.DataFrame(data)
```
3. 生成列的全排列,并拼接成一个新的索引:
```python
columns = df_A.columns.tolist()
column_permutations = list(product(*[columns] * len(columns)))
```
4. 对于每一个排列,创建一个新的DataFrame,筛选出指定列非空的行:
```python
result_tables = []
for perm in column_permutations:
sub_df = df_A.loc[:, perm].dropna(how='all') # 仅保留非空值的行
result_tables.append(sub_df)
```
现在,`result_tables`将是一个列表,包含了所有按给定列排列后的子数据框,其中只包含非空值的行。
如果你需要把这些结果保存到新的数据框中,可以考虑合并它们:
```python
full_result = pd.concat(result_tables) if result_tables else None
```
阅读全文