DDPM代码
时间: 2023-07-02 14:15:26 浏览: 189
一文弄懂 Diffusion Model(DDPM)+ 代码实现
DDPM(Diffusion Probabilistic Models)是一种用于生成模型的深度学习方法。以下是 DDPM 的 TensorFlow 2.0 实现代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
class GaussianDiffusion(tf.keras.Model):
def __init__(self, num_filters, num_diffusion_timesteps):
super(GaussianDiffusion, self).__init__()
self.num_filters = num_filters
self.num_diffusion_timesteps = num_diffusion_timesteps
self.diffusion_step = 1 / (num_diffusion_timesteps - 1)
self.net = tf.keras.Sequential([
layers.Conv2D(num_filters, 3, padding='same', activation='relu'),
layers.Conv2D(num_filters, 3, padding='same', activation='relu'),
layers.Conv2D(num_filters, 3, padding='same', activation='relu'),
layers.Conv2D(num_filters, 3, padding='same', activation='relu'),
layers.Conv2D(num_filters, 3, padding='same', activation='relu'),
layers.Conv2D(num_filters, 3, padding='same', activation=None),
])
def call(self, x, t, noise=None):
x = tf.cast(x, tf.float32)
t = tf.cast(t, tf.float32)
x_shape = tf.shape(x)
batch_size = x_shape[0]
height = x_shape[1]
width = x_shape[2]
if noise is None:
noise = tf.random.normal([batch_size, height, width, 3])
for i in range(self.num_diffusion_timesteps):
scale = tf.math.sqrt(1 - self.diffusion_step * i)
x_noisy = x + scale * noise
net_in = tf.concat([x_noisy, t[:, tf.newaxis, tf.newaxis, tf.newaxis] * tf.ones_like(x_noisy)], axis=-1)
noise = noise + self.net(net_in) * tf.math.sqrt(self.diffusion_step)
return x_noisy
```
这段代码实现了一个名为 GaussianDiffusion 的 TensorFlow 2.0 模型,并且提供了一个 `call` 方法,可以用于生成模型。其中,`num_filters` 表示卷积层中的滤波器数量,`num_diffusion_timesteps` 表示扩散时间步数。模型输入 `x` 表示图像,`t` 表示时间步,`noise` 表示噪声。最终,该模型会返回一个经过扩散的图像。
阅读全文