贝叶斯优化一维信号快速非局部均值去噪的Python代码
时间: 2023-12-28 19:05:45 浏览: 81
baynlm.rar_baynlm_visual c 降噪_贝叶斯 降噪_贝叶斯非局部_非局部均值
以下是贝叶斯优化一维信号快速非局部均值去噪的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import convolve
def nlm_denoise(y, sigma, h):
"""
Non-local means denoising using convolution.
"""
w = int(np.ceil(sigma * 3) * 2 + 1) # window size
pad = int(np.floor(w / 2)) # padding size
y_pad = np.pad(y, pad, mode='symmetric')
weights = np.zeros_like(y)
for i in range(len(y)):
w1 = y_pad[i:i+w]
for j in range(len(y)):
w2 = y_pad[j:j+w]
d = np.sum((w1 - w2) ** 2)
weights[i,j] = np.exp(-d / (h ** 2))
weights /= np.sum(weights, axis=1)[:, np.newaxis]
denoised = convolve(weights, y, mode='same')
return denoised
def objective(x, y, sigma, h):
"""
Objective function for Bayesian optimization.
"""
denoised = nlm_denoise(y, sigma, x)
mse = np.mean((denoised - y) ** 2)
return mse
def bayesian_optimization(y, sigma):
"""
Bayesian optimization for parameter h.
"""
from bayes_opt import BayesianOptimization
pbounds = {'h': (0.1, 1.0)}
optimizer = BayesianOptimization(f= lambda x: objective(x['h'], y, sigma, x['h']),
pbounds=pbounds,
random_state=1)
optimizer.maximize(init_points=5, n_iter=10)
return optimizer
# Generate noisy signal
t = np.linspace(0, 1, 100)
y = np.sin(2 * np.pi * t) + np.random.normal(0, 0.1, size=100)
# Bayesian optimization for h
optimizer = bayesian_optimization(y, sigma=0.1)
h = optimizer.max['params']['h']
print('Best h:', h)
# Denoise signal using non-local means
denoised = nlm_denoise(y, sigma=0.1, h=h)
# Plot results
fig, ax = plt.subplots()
ax.plot(t, y, label='Noisy signal')
ax.plot(t, denoised, label='Denoised signal')
ax.legend()
plt.show()
```
需要安装`scipy`和`bayesian-optimization`库。运行代码后,输出最佳的参数`h`,并绘制原始信号和去噪后的信号。
阅读全文