GRU-D代码pytorch
时间: 2023-09-20 16:13:28 浏览: 139
pytorch测试代码
以下是一个简单的GRU-D代码的PyTorch实现,用于处理时间序列数据。
```python
import torch
import torch.nn as nn
class GRUD(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout):
super(GRUD, self).__init__()
self.hidden_size = hidden_size
self.gru = nn.GRU(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, lengths):
"""
x: (batch_size, seq_len, input_size)
lengths: (batch_size,)
"""
# Sort input by decreasing sequence length
lengths, sort_idx = lengths.sort(0, descending=True)
x = x[sort_idx]
# Pack padded sequence
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True)
# Initialize hidden state
h0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
# Forward pass through GRU
out, _ = self.gru(x, h0)
# Unpack padded sequence
out, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
# Unsort output
unsort_idx = sort_idx.argsort()
out = out[unsort_idx]
# Apply dropout
out = self.dropout(out)
# Pass through fully connected layer
out = self.fc(out)
return out
```
在此代码中,我们定义了一个名为GRUD的类,其构造函数接收四个参数:输入大小,隐藏大小,输出大小和丢失率。我们使用nn.GRU定义了一个GRU层,它将输入大小作为输入维度,隐藏大小作为输出维度,并将batch_first设置为True以接受形状为(batch_size, seq_len, input_size)的输入。然后我们定义了一个全连接层,将隐藏状态转换为输出大小。最后,我们使用nn.Dropout定义了一个丢失层,以防止过拟合。
在前向传递函数中,我们首先将输入序列按其长度降序排列,并使用nn.utils.rnn.pack_padded_sequence对它们进行打包。这样做可以使GRU只处理非填充部分,从而提高效率。我们还在GRU之前初始化了一个零隐藏状态,并使用batch_first=True设置GRU的输入和输出格式。然后我们使用nn.utils.rnn.pad_packed_sequence对输出进行解压缩,并使用unsort_idx将其还原为原始顺序。最后,我们应用丢失层并通过全连接层传递输出。
要使用此模型进行训练,我们需要定义一个损失函数和优化器,并使用适当的数据加载器将数据传递给模型。例如,以下是一个简单的训练循环:
```python
model = GRUD(input_size, hidden_size, output_size, dropout)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (inputs, targets, lengths) in enumerate(train_loader):
inputs, targets, lengths = inputs.to(device), targets.to(device), lengths.to(device)
outputs = model(inputs, lengths)
loss = criterion(outputs.view(-1, output_size), targets.view(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Evaluate the model after each epoch
with torch.no_grad():
correct = 0
total = 0
for inputs, targets, lengths in test_loader:
inputs, targets, lengths = inputs.to(device), targets.to(device), lengths.to(device)
outputs = model(inputs, lengths)
_, predicted = torch.max(outputs.data, 2)
total += targets.size(0) * targets.size(1)
correct += (predicted == targets).sum().item()
accuracy = correct / total
print(f"Epoch {epoch+1}, Test Accuracy: {accuracy:.4f}")
```
在此训练循环中,我们遍历训练数据加载器中的所有批次,并将输入、目标和长度传递给模型。我们使用交叉熵损失计算损失,并使用Adam优化器进行反向传播和权重更新。在每个时代之后,我们使用测试数据加载器评估模型的性能,并计算分类准确度。
阅读全文