obtain the even numbers in a list using list comprehension

时间: 2024-06-03 19:09:51 浏览: 56
RAR

Obtain the hardware information of the PC Using C#.rar

Sure, you can obtain the even numbers in a list using list comprehension in Python! Here's an example code: numbers_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] even_numbers_list = [number for number in numbers_list if number % 2 == 0] print(even_numbers_list) Output: [2, 4, 6, 8, 10]
阅读全文

相关推荐

The Sleeping Teaching Assistant A university computer science department has a teaching assistant (TA) who helps undergraduate students with their programming assignments during regular office hours. The TA’s office is rather small and has room for only one desk with a chair and computer. There are three chairs in the hallway outside the office where students can sit and wait if the TA is currently helping another student. When there are no students who need help during office hours, the TA sits at the desk and takes a nap. If a student arrives during office hours and finds the TA sleeping, the student must awaken the TA to ask for help. If a student arrives and finds the TA currently helping another student, the student sits on one of the chairs in the hallway and waits. If no chairs are available, the student will come back at a later time. Using POSIX threads, mutex locks, and/or semaphores, implement a solution that coordinates the activities of the TA and the students. Details for this assignment are provided below. Using Pthreads, begin by creating N students. Each will run as a separate thread. The TA will run as a separate thread as well. Student threads will alternate between programming for a period of time and seeking help from the TA. If the TA is available, they will obtain help. Otherwise, they will either sit in a chair in the hallway or, if no chairs are available, will resume programming and will seek help at a later time. If a student arrives and notices that the TA is sleeping, the student must notify the TA using a semaphore. When the TA finishes helping a student, the TA must check to see if there are students waiting for help in the hallway. If so, the TA must help each of these students in turn. If no students are present, the TA may return to napping. Perhaps the best option for simulating students programming—as well as the TA providing help to a student—is to have the appropriate threads sleep for a random period of time using the sleep() API:

GOAL Perform a Poisson regression to predict the number of people in a househouse based on the age of the head of the household. DATA The Philippine Statistics Authority (PSA) spearheads the Family Income and Expenditure Survey (FIES) nationwide. The survey, which is undertaken every three years, is aimed at providing data on family income and expenditure, including levels of consumption by item of expenditure. The data, from the 2015 FIES, is a subset of 1500 of the 40,000 observations (Philippine Statistics Authority 2015). The data set focuses on five regions: Central Luzon, Metro Manila, Ilocos, Davao, and Visayas. The data is in the file fHH1.csv. Each row is a household, and the follow variables are recorded: • location: where the house is located (Central Luzon, Davao Region, Ilocos Region, Metro Manila, or Visayas) • age: the age of the head of household • total: the number of people in the household other than the head • numLT5: the number in the household under 5 years of age • roof: the type of roof in the household (either Predominantly Light/Salvaged Material, or Predominantly Strong Material. STEPS 1. Read in the dataset. 2. Produce a bar-chart of total 3. Produce a scatter-plot of total against age - add a smoothing line. 4. Fit the Poisson regression total ∼ age 5. Interpret the coefficient of age. 6. Obtain the Pearson residuals. Plot these against age. Is the model adequate? 7. Fit the Poisson regression total ∼ age + age2 8. Repeat the residual plots for the new model. 9. Compare the models using a likelihood ratio test, and AIC. 10. Calculate the predicted values for model M2. What is the age of the head of the household associated with the largest fitted value 使用R语言

3.4 Pair Interaction Feature The interaction pattern between two individuals is encoded by a spatial descriptor with view invariant relative pose encoding. Given the 3D locations of two individual detec- tions zi,zj and two pose features pi,pj, we represent the pairwise relationship using view normalization, pose co-occurrence encoding, semantic compression and a spatial histogram (see Fig. 5 for illustration). The view normalization is performed by rotating the two people in 3D space by θ with respect to their midpoint, making their connecting line perpendicular to the cam- era view point. In this step, the pose features are also shifted accordingly (e.g. if θ = 45‘, shift 1 dimension with a cycle). Then, the co-occurrence feature is obtained by building a 2-dimensional matrix in which each element (r, c) corresponds to min(pi(r), pj (c)). Although the feature is view invariant, there are still elements in the matrix that deliver the same semantic concepts (e.g. left-left and right-right). To reduce such unnecessary variance and obtain a compact representation, we perform another transformation by multiplying a semantic compression matrix Sc to the vector form of the co-occurrence feature. The matrix Sc is learned offline by enumerating all possible configurations of view points and grouping the pairs that are equivalent when rotated by 180 degrees. Finally, we obtain the pair interaction descriptor by building a spatial histogram based on the 3D distance between the two (bin centers at 0.2, 0.6, 2.0 and 6.5 m). Here, we use linear interpolation similarly to contextual feature in Sec. 3.3. Given the interac- tion descriptor for each pair, we represent the interaction feature φxx(xi,xj) using the confidence value from an SVM classifier trained on a dictionary of interaction labels Y.什么意思

A = imread('krabi1.bmp','BMP'); %read in the image A_shrunk = imresize(A,0.2); % we’ll reduce the resolution, as otherwise the file size is too large imshow(A_shrunk) % displays the shrunken image Bs = reshape(A_shrunk,[388*518*3,1,1]); % resizes this image from a pixel array of three colours to a one-dimensional data stream C = de2bi(double(Bs)); % converts these values to binary representation % You can then resize this array to a linear, one-dimensional array. % this data stream C is then what you can communicate over your channel. % recover the image from the binary sequence BS_rec = uint8(bi2de(C)); % convert bits to pixel values. A_rec = reshape(BS_rec,[388,518,3]); % reshape back to a coloured pixel array. imshow(A_rec) % display the recovered image. Explore the pskmod and pskdemod commands in MATLAB. Use these to modulate and demodulate the binary sequence into a binary PSK signal. (Hint: the command should be something like D = pskmod(C,2). Display a part of this signal, and explain carefully how we have represented this signal in MATLAB, and how it differs from the analysis we performed in Part A. Transmit this signal through an AWGN channel using the awgn() function for a range of signal to noise ratios. Demodulate and comment on the effect of the noise on the image. A suitable range of signal to noise ratios is –0.5dB to 5 dB. The bit error rate refers to the fraction of bits that are received in error. This can also be interpreted as the probability that a bit is received in error. Calculate the bit error rate (BER) for the signal to noise ratios you used above. Comment on the correlation between BER and perceptual image quality. Now apply channel coding to the transmitted data sequence. Use encode(msg,7,4,’hamming’), encode(msg,15,7,’bch’), and convenc, following the example listed in the help window (recall, in MATLAB type “help convenc” to obtain the help information for that command. For each of these codes, study how the code can reduce the BER and improve image quality for each SNR you studied above.

最新推荐

recommend-type

解决IDEA错误 Cause: java.sql.SQLException: The server time zone value的问题

标题中的问题“Cause: java.sql.SQLException: The server time zone value”是Java开发者在使用IDEA(IntelliJ IDEA)进行数据库连接时常见的错误提示。这个错误通常发生在尝试连接到MySQL等SQL数据库时,由于...
recommend-type

Vue2 全家桶 + Vant 搭建大型单页面商城项目 新蜂商城前床分离版本-前端Vue 项目源码.zip

newbee-mall 项目是一套电商系统,包括 newbee-mall 商城系统及 newbee-mall-admin 商城后台管理系统,基于 Spring Boot 2.X 和 Vue 以及相关技术栈开发。前台商城系统包含首页门户、商品分类、新品上市、首页轮播、商品推荐、商品搜索、商品展示、购物车、订单、订单结算流程、个人订单管理、会员中心、帮助中心等模块。后台管理系统包含数据面板、轮播图管理、商品管理、订单管理、会员管理、分类管理、设置等模块。本仓库中的源码为新蜂商城前分离版本的 Vue 项目(Vue 版本为 2.x),主要前端开发人员,右上角 API 源码在另外一个仓库newbee-mall-api。新蜂商城 Vue 版本线上预览地址http://vue-app.newbee.ltd,账号可自行注册,建议使用手机模式打开。前储物版本包括四个仓库新蜂商城耳机接口 newbee-mall-api新蜂商城 Vue2 版本 newbee-mall-vue-app新蜂商城 Vue3 版本 newbee-mall-vue3-app新蜂商城后台管理系统 Vue3
recommend-type

【创新未发表】基于matlab沙猫群算法SCSO-PID控制器优化【含Matlab源码 9671期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化PID系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化PID 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化PID 4.4.3 灰狼算法GWO/狼群算法WPA优化PID 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化PID 4.4.5 萤火虫算法FA/差分算法DE优化PID 4.4.6 其他优化算法优化PID
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型