写一个STM32L051C8T6的代码,使用HAL库,使用内部EEPROM存储,要求上电发送进入地址设置指令,进入地址设定状态,保证7个RGBLED灭,然后在对应地址放入瓶子,轮询三次,相应的RGBLED闪三下,LED闪三下一样的绿色则最后显示绿灯,LED闪三下不同的(绿色或红色)则最后显示红灯,显示绿灯则串口1显示正确的地址,显示红灯则不显,当地址设定正确后,地址设定状态结束,进入工作状态,运行其他工作代码

时间: 2023-10-02 08:12:09 浏览: 41
以下是一个可能的实现代码,需要根据具体硬件和接口进行调整: ``` #include "stm32l0xx_hal.h" #include <string.h> #define EEPROM_START_ADDR 0x08080000 // 内部EEPROM地址 #define ADDR_SET_CMD 0xA5 // 进入地址设置模式的指令 #define LED_PORT GPIOA #define LED_PIN_1 GPIO_PIN_1 #define LED_PIN_2 GPIO_PIN_2 #define LED_PIN_3 GPIO_PIN_3 #define GREEN_LED_ON HAL_GPIO_WritePin(LED_PORT, LED_PIN_1, GPIO_PIN_RESET) #define GREEN_LED_OFF HAL_GPIO_WritePin(LED_PORT, LED_PIN_1, GPIO_PIN_SET) #define RED_LED_ON HAL_GPIO_WritePin(LED_PORT, LED_PIN_2, GPIO_PIN_RESET) #define RED_LED_OFF HAL_GPIO_WritePin(LED_PORT, LED_PIN_2, GPIO_PIN_SET) #define BLUE_LED_ON HAL_GPIO_WritePin(LED_PORT, LED_PIN_3, GPIO_PIN_RESET) #define BLUE_LED_OFF HAL_GPIO_WritePin(LED_PORT, LED_PIN_3, GPIO_PIN_SET) UART_HandleTypeDef huart1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_FLASH_Init(void); void enter_address_setting_mode(void); void exit_address_setting_mode(void); void write_address_to_eeprom(uint8_t addr); uint8_t read_address_from_eeprom(void); void blink_leds(uint8_t color, uint8_t times); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART1_UART_Init(); MX_FLASH_Init(); // 上电发送进入地址设置指令 enter_address_setting_mode(); // 等待地址设置完成 uint8_t addr = 0; while (addr == 0) { addr = read_address_from_eeprom(); HAL_Delay(100); } // 进入工作状态 exit_address_setting_mode(); // 运行其他工作代码 while (1) { // do something } } void enter_address_setting_mode(void) { // 发送进入地址设置指令 uint8_t cmd = ADDR_SET_CMD; HAL_UART_Transmit(&huart1, &cmd, 1, HAL_MAX_DELAY); // 等待进入地址设置状态 HAL_Delay(1000); // 保证RGBLED灭 BLUE_LED_OFF; GREEN_LED_OFF; RED_LED_OFF; } void exit_address_setting_mode(void) { // 离开地址设置状态 uint8_t cmd = 0; HAL_UART_Transmit(&huart1, &cmd, 1, HAL_MAX_DELAY); // 确认地址正确性 uint8_t addr = read_address_from_eeprom(); if (addr > 0 && addr < 8) { // 正确的地址,绿灯亮 GREEN_LED_ON; // 显示地址 char buf[32]; sprintf(buf, "Address: %d\r\n", addr); HAL_UART_Transmit(&huart1, (uint8_t *)buf, strlen(buf), HAL_MAX_DELAY); } else { // 错误的地址,红灯亮 RED_LED_ON; } } void write_address_to_eeprom(uint8_t addr) { HAL_FLASH_Unlock(); FLASH_EraseInitTypeDef erase_init; erase_init.TypeErase = FLASH_TYPEERASE_PAGES; erase_init.PageAddress = EEPROM_START_ADDR; erase_init.NbPages = 1; uint32_t page_err; HAL_FLASHEx_Erase(&erase_init, &page_err); HAL_FLASH_Program(FLASH_TYPEPROGRAM_BYTE, EEPROM_START_ADDR, addr); HAL_FLASH_Lock(); } uint8_t read_address_from_eeprom(void) { return *(uint8_t *)EEPROM_START_ADDR; } void blink_leds(uint8_t color, uint8_t times) { for (int i = 0; i < times; i++) { if (color == 0) // 红 { RED_LED_ON; HAL_Delay(500); RED_LED_OFF; HAL_Delay(500); } else if (color == 1) // 绿 { GREEN_LED_ON; HAL_Delay(500); GREEN_LED_OFF; HAL_Delay(500); } else // 红绿交替 { RED_LED_ON; HAL_Delay(250); RED_LED_OFF; GREEN_LED_ON; HAL_Delay(250); GREEN_LED_OFF; } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = 0; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_5; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_FLASH_Init(void) { /* FLASH Initialization */ FLASH_EraseInitTypeDef EraseInitStruct; uint32_t SectorError; HAL_FLASH_Unlock(); __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.PageAddress = EEPROM_START_ADDR; EraseInitStruct.NbPages = 1; if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) { Error_Handler(); } HAL_FLASH_Lock(); } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_PORT, LED_PIN_1 | LED_PIN_2 | LED_PIN_3, GPIO_PIN_RESET); /*Configure GPIO pins : LED_PIN_1 LED_PIN_2 LED_PIN_3 */ GPIO_InitStruct.Pin = LED_PIN_1 | LED_PIN_2 | LED_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); } static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } } void Error_Handler(void) { __disable_irq(); while (1) { } } ```

相关推荐

最新推荐

recommend-type

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动
recommend-type

TLBB服务端综合工具

潇湘综合工具
recommend-type

数据库管理工具:dbeaver-ce-23.0.1-linux.gtk.aarch64-nojdk.tar.gz

1.DBeaver是一款通用数据库工具,专为开发人员和数据库管理员设计。 2.DBeaver支持多种数据库系统,包括但不限于MySQL、PostgreSQL、Oracle、DB2、MSSQL、Sybase、Mimer、HSQLDB、Derby、SQLite等,几乎涵盖了市场上所有的主流数据库。 3.支持的操作系统:包括Windows(2000/XP/2003/Vista/7/10/11)、Linux、Mac OS、Solaris、AIX、HPUX等。 4.主要特性: 数据库管理:支持数据库元数据浏览、元数据编辑(包括表、列、键、索引等)、SQL语句和脚本的执行、数据导入导出等。 用户界面:提供图形界面来查看数据库结构、执行SQL查询和脚本、浏览和导出数据,以及处理BLOB/CLOB数据等。用户界面设计简洁明了,易于使用。 高级功能:除了基本的数据库管理功能外,DBeaver还提供了一些高级功能,如数据库版本控制(可与Git、SVN等版本控制系统集成)、数据分析和可视化工具(如图表、统计信息和数据报告)、SQL代码自动补全等。
recommend-type

基于Boson的计算机网络实验:RIP和IGRP的配置

基于Boson的计算机网络实验:RIP和IGRP的配置
recommend-type

数据分析方法课后习题答案及习题答案 各章例题之SAS程序.zip

数据分析方法课后习题答案及习题答案 各章例题之SAS程序
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。