conv1_more = [conv_block(hidden_chn, hidden_chn) for _ in range(block_num - 1)]
时间: 2024-05-21 18:18:41 浏览: 133
这行代码的作用是创建一个由多个卷积块组成的列表。具体来说,它使用了列表推导式,将一个名为`conv_block`的函数应用到`block_num - 1`次,生成一个包含多个卷积块的列表`conv1_more`。每个卷积块都有`hidden_chn`个隐藏通道。值得注意的是,这行代码只创建了一个列表,而没有对其进行任何操作。
相关问题
class AttU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(AttU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) self.sigmoid = nn.Sigmoid()
这段代码定义了一个名为AttU_Net的PyTorch模型。它是一个基于U-Net的改进模型,用于图像分割任务。模型的输入通道数为img_ch,输出通道数为output_ch。
在初始化函数中,首先定义了一个MaxPool2d层,用于下采样操作。
接下来,通过conv_block函数定义了五个卷积块(self.Conv1到self.Conv5),每个卷积块包含一个卷积层和批归一化层。
然后,定义了四个上采样操作(self.Up5到self.Up2),每个上采样操作包含一个上采样层和一个卷积块。
在每个上采样操作后,使用Attention_block模块(self.Att5到self.Att2)对特征图进行注意力计算。
最后,通过一个1x1的卷积层(self.Conv_1x1)将通道数变为output_ch,并使用Sigmoid函数进行输出。
这个AttU_Net模型的设计主要是在U-Net的基础上添加了注意力机制,以提升分割性能。
def model(self): num_classes = self.config.get("CNN_training_rule", "num_classes") seq_length = self.config.get("CNN_training_rule", "seq_length") conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") model_input = keras.layers.Input((seq_length,1), dtype='float64') # conv1形状[batch_size, seq_length, conv1_num_filters] conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) relued = keras.layers.ReLU()(droped) model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) model = keras.models.Model(inputs=model_input, outputs=model_output) # model.compile(loss="categorical_crossentropy", # optimizer="adam", # metrics=["accuracy"]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) return model给这段代码每行加上注释
```
def model(self):
# 获取配置文件中的参数
num_classes = self.config.get("CNN_training_rule", "num_classes") #分类数
seq_length = self.config.get("CNN_training_rule", "seq_length") #序列长度
conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") #第一层卷积核数量
conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") #第一层卷积核大小
conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") #第二层卷积核数量
conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") #第二层卷积核大小
hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") #全连接层隐藏层大小
dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") #dropout保留率
# 定义模型输入
model_input = keras.layers.Input((seq_length,1), dtype='float64')
# 第一层卷积
conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input)
# 第二层卷积
conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1)
# 全局最大池化
max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2)
# 全连接层
full_connect = keras.layers.Dense(hidden_dim)(max_poolinged)
# dropout层
droped = keras.layers.Dropout(dropout_keep_prob)(full_connect)
# relu激活层
relued = keras.layers.ReLU()(droped)
# 输出层
model_output = keras.layers.Dense(num_classes, activation="softmax")(relued)
# 定义模型
model = keras.models.Model(inputs=model_input, outputs=model_output)
# 编译模型
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 打印模型结构
print(model.summary())
return model
```
阅读全文