conv1_more = [conv_block(hidden_chn, hidden_chn) for _ in range(block_num - 1)]

时间: 2024-05-21 21:18:41 浏览: 19
这行代码的作用是创建一个由多个卷积块组成的列表。具体来说,它使用了列表推导式,将一个名为`conv_block`的函数应用到`block_num - 1`次,生成一个包含多个卷积块的列表`conv1_more`。每个卷积块都有`hidden_chn`个隐藏通道。值得注意的是,这行代码只创建了一个列表,而没有对其进行任何操作。
相关问题

self.conv1_gates = nn.Conv2d

我看到你的代码中定义了一个名为 `conv1_gates` 的卷积层,它是一个二维卷积层,具体实现可以看下面的代码示例: ```python import torch.nn as nn self.conv1_gates = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1, bias=True) ``` 其中,`in_channels` 表示输入数据的通道数,这里为 3,因为是 RGB 彩色图片;`out_channels` 表示输出通道数,这里为 32;`kernel_size` 表示卷积核的大小,这里为 3x3;`stride` 表示卷积核在每个维度上的步长,这里为 1;`padding` 表示在输入数据周围填充的大小,这里为 1;`bias` 表示是否使用偏置项。 这个卷积层的作用是提取输入数据的特征,以便后续的处理。

conv_layer = layers.Conv1D

layers.Conv1D是TensorFlow中的一个函数,用于创建一维卷积层。这个函数可以接受一个输入张量和一些参数,然后返回一个经过卷积操作后的输出张量。在使用layers.Conv1D时,你需要注意以下几点: - 输入张量的维度应该是(batch_size, seq_length, embedding_dim),其中batch_size表示每次输入的文本数量,seq_length表示每个文本的词语数或者单字数,embedding_dim表示每个词语或者每个字的向量长度。 - filters参数指定了卷积核(过滤器)的数目。 - kernel_size参数指定了卷积核的大小,卷积核可以看做是一个滑窗,它沿着输入张量的seq_length维度进行滑动。 - 执行卷积操作后,会得到一个输出张量,其维度为(batch_size, seq_length - kernel_size + 1, filters)。 下面是一个使用layers.Conv1D的代码示例: ```python import tensorflow as tf num_filters = 2 kernel_size = 2 batch_size = 1 seq_length = 4 embedding_dim = 5 embedding_inputs = tf.constant(-1.0, shape=[batch_size, seq_length, embedding_dim], dtype=tf.float32) conv = tf.layers.Conv1D(num_filters, kernel_size)(embedding_inputs) session = tf.Session() session.run(tf.global_variables_initializer()) print(session.run(conv).shape) ``` 以上代码创建了一个卷积层,并对输入张量进行卷积操作。最后打印输出张量的形状。

相关推荐

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

def model(self): num_classes = self.config.get("CNN_training_rule", "num_classes") seq_length = self.config.get("CNN_training_rule", "seq_length") conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") model_input = keras.layers.Input((seq_length,1), dtype='float64') # conv1形状[batch_size, seq_length, conv1_num_filters] conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) relued = keras.layers.ReLU()(droped) model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) model = keras.models.Model(inputs=model_input, outputs=model_output) # model.compile(loss="categorical_crossentropy", # optimizer="adam", # metrics=["accuracy"]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) return model给这段代码每行加上注释

class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=32, stride=8, padding=12) self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.BN = nn.BatchNorm1d(num_features=64) self.conv3_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool3_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool3_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1) self.pool3_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2) self.pool5_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2) self.pool5_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2) self.pool5_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.pool2 = nn.MaxPool1d(kernel_size=8, stride=1) self.fc = nn.Linear(in_features=256 * 3, out_features=4) ##这里的256*3是计算出来的 self.softmax = nn.Softmax(),解释各部分的作用和参数选择

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

主要介绍了Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

pytorch 状态字典:state_dict使用详解

for param in model.pretrained.parameters(): param.requires_grad = False ``` 需要注意的是,不能直接对模型层对象如`model.conv1`设置`requires_grad`,因为`requires_grad`是Tensor的属性,而不是Layer的属性...
recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

其输入参数包括`value`(输入张量,形状为[batch, in_width, in_channels]或[batch, in_channels, in_width],取决于`data_format`)、`filters`(过滤器张量,形状为[filter_width, in_channels, out_channels]),...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依