Linux内核uart驱动中,tx_empty和stop_tx等功能函数有可能同时被调用吗

时间: 2024-04-04 09:35:27 浏览: 200
在 Linux 内核 UART 驱动中,`tx_empty()` 和 `stop_tx()` 是两个不同的功能函数,它们可能会在不同的上下文中被调用,因此有可能同时被调用。 `tx_empty()` 函数用于检查 UART 的发送缓冲区是否为空,如果为空则返回一个非零值,否则返回零。该函数通常在中断处理程序中被调用,以确定是否需要启动发送下一批数据。 而 `stop_tx()` 函数用于停止 UART 的发送操作。该函数通常在应用程序或驱动程序中被调用,以停止某个数据流的发送。 由于这两个函数的调用上下文不同,因此它们有可能同时被调用。例如,当应用程序正在发送数据时,中断处理程序可能在发送缓冲区为空的情况下调用 `tx_empty()` 函数,而此时驱动程序可能又调用 `stop_tx()` 函数以停止数据的发送。 因此,在编写 Linux 内核 UART 驱动时,必须考虑并发执行的情况,并采取适当的同步机制来保证数据的一致性和正确性。
相关问题

linux内核uart驱动,使用队列解耦原有的功能函数

Linux内核UART驱动通常使用队列来解耦原有的功能函数,以提高代码的可读性和可维护性。这种方法的基本思想是将不同的功能分割成独立的模块,每个模块都有一个输入队列和一个输出队列。 输入队列用于接收来自UART接口的数据,处理数据并将结果放入输出队列中。输出队列中的数据可以是控制命令、状态信息或者其他需要传递给上层应用程序的数据。这种方法的优点是可以使编写驱动程序更加简单,易于维护和扩展。 以下是一个使用队列解耦原有功能函数的UART驱动程序的示例: ```c #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/serial_core.h> #define BUFFER_SIZE 1024 struct uart_device { struct cdev cdev; struct uart_port port; struct mutex mutex; struct work_struct work; struct tasklet_struct tasklet; spinlock_t lock; wait_queue_head_t read_queue; wait_queue_head_t write_queue; char *buf; int head; int tail; }; static int uart_driver_open(struct inode *inode, struct file *file) { struct uart_device *dev; dev = container_of(inode->i_cdev, struct uart_device, cdev); file->private_data = dev; return 0; } static int uart_driver_release(struct inode *inode, struct file *file) { return 0; } static ssize_t uart_driver_read(struct file *file, char __user *buf, size_t count, loff_t *offset) { struct uart_device *dev = file->private_data; ssize_t ret; if (count == 0) return 0; if (wait_event_interruptible(dev->read_queue, dev->head != dev->tail)) return -ERESTARTSYS; mutex_lock(&dev->mutex); if (dev->head > dev->tail) { ret = min_t(ssize_t, count, dev->head - dev->tail); if (copy_to_user(buf, dev->buf + dev->tail, ret)) { ret = -EFAULT; goto out; } dev->tail += ret; } else { ret = min_t(ssize_t, count, BUFFER_SIZE - dev->tail); if (copy_to_user(buf, dev->buf + dev->tail, ret)) { ret = -EFAULT; goto out; } dev->tail = (dev->tail + ret) % BUFFER_SIZE; } out: mutex_unlock(&dev->mutex); return ret; } static ssize_t uart_driver_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { struct uart_device *dev = file->private_data; ssize_t ret; if (count == 0) return 0; if (wait_event_interruptible(dev->write_queue, dev->head != ((dev->tail - 1 + BUFFER_SIZE) % BUFFER_SIZE))) return -ERESTARTSYS; mutex_lock(&dev->mutex); if (dev->tail > dev->head) { ret = min_t(ssize_t, count, BUFFER_SIZE - dev->tail); if (copy_from_user(dev->buf + dev->tail, buf, ret)) { ret = -EFAULT; goto out; } dev->tail += ret; } else { ret = min_t(ssize_t, count, dev->head - dev->tail); if (copy_from_user(dev->buf + dev->tail, buf, ret)) { ret = -EFAULT; goto out; } dev->tail = (dev->tail + ret) % BUFFER_SIZE; } out: mutex_unlock(&dev->mutex); return ret; } static void uart_driver_work(struct work_struct *work) { struct uart_device *dev = container_of(work, struct uart_device, work); struct uart_port *port = &dev->port; unsigned char c; int i; mutex_lock(&dev->mutex); while (uart_chars_avail(port)) { c = uart_get_char(port); if (dev->head == ((dev->tail - 1 + BUFFER_SIZE) % BUFFER_SIZE)) { /* Buffer is full, drop the incoming character */ continue; } dev->buf[dev->head] = c; dev->head = (dev->head + 1) % BUFFER_SIZE; } mutex_unlock(&dev->mutex); wake_up_interruptible(&dev->read_queue); } static void uart_driver_tasklet(unsigned long data) { struct uart_device *dev = (struct uart_device *)data; struct uart_port *port = &dev->port; unsigned char c; int i; spin_lock(&dev->lock); while (uart_chars_avail(port)) { c = uart_get_char(port); if (dev->head == ((dev->tail - 1 + BUFFER_SIZE) % BUFFER_SIZE)) { /* Buffer is full, drop the incoming character */ continue; } dev->buf[dev->head] = c; dev->head = (dev->head + 1) % BUFFER_SIZE; } spin_unlock(&dev->lock); wake_up_interruptible(&dev->read_queue); } static void uart_driver_start(struct uart_port *port) { struct uart_device *dev = container_of(port, struct uart_device, port); INIT_WORK(&dev->work, uart_driver_work); tasklet_init(&dev->tasklet, uart_driver_tasklet, (unsigned long)dev); spin_lock_init(&dev->lock); init_waitqueue_head(&dev->read_queue); init_waitqueue_head(&dev->write_queue); mutex_init(&dev->mutex); dev->buf = kzalloc(BUFFER_SIZE, GFP_KERNEL); dev->head = 0; dev->tail = 0; uart_write_wakeup(port); } static void uart_driver_stop(struct uart_port *port) { struct uart_device *dev = container_of(port, struct uart_device, port); cancel_work_sync(&dev->work); tasklet_kill(&dev->tasklet); spin_lock_irq(&dev->lock); dev->head = dev->tail = 0; spin_unlock_irq(&dev->lock); kfree(dev->buf); } static struct uart_ops uart_driver_ops = { .tx_empty = uart_tx_empty, .set_mctrl = uart_set_mctrl, .get_mctrl = uart_get_mctrl, .stop_tx = uart_stop_tx, .start_tx = uart_start_tx, .send_xchar = uart_send_xchar, .stop_rx = uart_stop_rx, .enable_ms = uart_enable_ms, .break_ctl = uart_break_ctl, .startup = uart_driver_start, .shutdown = uart_driver_stop, }; static struct uart_driver uart_driver = { .owner = THIS_MODULE, .driver_name = "uart_driver", .dev_name = "ttyUART", .major = 0, .minor = 0, .nr = 1, .cons = NULL, .ops = &uart_driver_ops, }; static int __init uart_driver_init(void) { dev_t devno; int ret; ret = alloc_chrdev_region(&devno, 0, 1, "uart_driver"); if (ret < 0) return ret; cdev_init(&uart_driver.cdev, &uart_driver_ops); uart_driver.cdev.owner = THIS_MODULE; ret = cdev_add(&uart_driver.cdev, devno, 1); if (ret < 0) { unregister_chrdev_region(devno, 1); return ret; } uart_register_driver(&uart_driver); return 0; } static void __exit uart_driver_exit(void) { uart_unregister_driver(&uart_driver); cdev_del(&uart_driver.cdev); unregister_chrdev_region(uart_driver.cdev.dev, 1); } module_init(uart_driver_init); module_exit(uart_driver_exit); MODULE_AUTHOR("Your Name"); MODULE_LICENSE("GPL"); ``` 在这个驱动程序中,我们使用了两个输入队列和一个输出队列。`read_queue` 用于接收来自 UART 的数据,`write_queue` 用于接收要发送到 UART 的数据,`buf` 用于存储接收到的数据。 `wait_event_interruptible` 函数用于等待数据到达队列。`mutex_lock` 和 `mutex_unlock` 函数用于保护共享数据结构。`wake_up_interruptible` 函数用于唤醒等待在队列上的进程。 `uart_driver_work` 和 `uart_driver_tasklet` 函数用于从 UART 中接收数据,并将接收到的数据放入输入队列中。 `uart_driver_start` 和 `uart_driver_stop` 函数用于初始化和清除输入队列和输出队列中的数据。`uart_driver_ops` 结构体包含了驱动程序中使用的 UART 操作。`uart_driver` 结构体包含了驱动程序的基本信息。 通过使用队列解耦原有的功能函数,我们可以将驱动程序中的不同部分分割成独立的模块,使得代码更加简洁、易于维护和扩展。

linux内核的__uart_start函数

__uart_start函数是Linux内核中用于启动串口传输的函数。该函数位于drivers/tty/serial/serial_core.c文件中,其作用是启动与串口相关的数据传输。 具体来说,__uart_start函数会检查串口的状态,如果发现串口处于空闲状态,则将串口的数据传输状态设置为“已启动”。此后,数据将通过串口进行传输,直到传输完成或者被中断。 在Linux内核中,__uart_start函数通常由其他串口驱动程序调用,以便在需要时启动数据传输。该函数的实现依赖于操作系统底层的硬件控制器和驱动程序,因此在不同的硬件平台和操作系统版本中可能存在差异。
阅读全文

相关推荐

最新推荐

recommend-type

arm初学者之串口驱动中Uart_Printf()函数

ARM 初学者之串口驱动中 Uart_Printf() 函数 Uart_Printf() 函数是 ARM 串口驱动中的一种重要函数,用于将格式化字符串发送到串口。该函数的原型为 `void Uart_Printf(char *fmt, ...)`,其中 `fmt` 是格式字符串,...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001