C++ 空间点A的xyz绕着空间点B点的xyz,旋转45度到空间点C点,求C点的的xyz
时间: 2024-09-21 16:03:10 浏览: 56
在三维空间中,如果要计算空间点A围绕空间点B做45度旋转并得到点C的坐标,通常需要使用矩阵旋转的概念。假设A、B、C的初始坐标分别是(Ax, Ay, Az),(Bx, By, Bz),和未知的(Cx, Cy, Cz)。
首先,我们需要知道旋转轴的方向,这里默认是通过B点和原点O建立的向量(Bx, By, Bz)。为了简化,我们可以将点B视为旋转中心,即B点的坐标为(0, 0, 0)。然后,我们将点A相对于B做旋转变换。
对于绕X轴逆时针旋转45度的情况,可以使用以下步骤:
1. 将点A从B点移除得到相对坐标 (Ax - Bx, Ay - By, Az - Bz)。
2. 创建旋转矩阵,针对Z轴顺时针旋转90度(因为45度等于90度的一半),再针对X轴逆时针旋转45度。这可以用以下矩阵表示:
```
R = [[cos(45), sin(45), 0],
[-sin(45), cos(45), 0],
[ 0, 0, 1]]
```
3. 将点A的相对坐标乘以旋转矩阵R:
```
rotated_A = R * [(Ax - Bx), (Ay - By), (Az - Bz)]
```
4. 将旋转后的坐标加上B点的位置得到最终的点C坐标:
```
Cx = rotated_A[0] + Bx
Cy = rotated_A[1] + By
Cz = rotated_A[2] + Bz
```
请注意,这里的公式基于笛卡尔坐标系,并假设角度是以弧度为单位的。如果你的角度是以度为单位,记得先转换为弧度。
阅读全文
相关推荐


















