R语言中,支持计算GBM模型,COXBOOST模型,SVM模型的BRIER SCORE 和变量重要性的包以及详细代码
时间: 2023-12-06 22:05:10 浏览: 92
XGBoost+LightGBM+LSTM-光伏发电量预测包含比赛代码、数据、训练后的神经网络模型.zip
5星 · 资源好评率100%
在R语言中,有多个包可以支持计算GBM模型,COXBOOST模型,SVM模型的BRIER SCORE和变量重要性。以下是一些常用的包和相应的代码示例:
1. GBM模型
- 包:gbm
- 计算BRIER SCORE的代码:
```R
library(gbm)
data(iris)
set.seed(123)
train <- sample(nrow(iris), 0.7 * nrow(iris))
iris.gbm <- gbm(Species ~ ., data = iris[train,], distribution = "multinomial", n.trees = 1000, interaction.depth = 3, shrinkage = 0.01)
pred <- predict(iris.gbm, newdata = iris[-train,], n.trees = 1000)
brier_score <- mean((pred - as.numeric(iris[-train,"Species"]))^2)
print(brier_score)
```
- 计算变量重要性的代码:
```R
library(gbm)
data(iris)
set.seed(123)
train <- sample(nrow(iris), 0.7 * nrow(iris))
iris.gbm <- gbm(Species ~ ., data = iris[train,], distribution = "multinomial", n.trees = 1000, interaction.depth = 3, shrinkage = 0.01)
summary(iris.gbm)
```
2. COXBOOST模型
- 包:CoxBoost
- 计算BRIER SCORE的代码:
```R
library(CoxBoost)
data(veteran)
set.seed(123)
train <- sample(nrow(veteran), 0.7 * nrow(veteran))
veteran.coxboost <- coxboost(Surv(time, status) ~ ., data = veteran[train,], nboost = 1000, maxdepth = 3, gamma = 0.1)
pred <- predict(veteran.coxboost, newdata = veteran[-train,], type = "risk")
brier_score <- mean((pred - veteran[-train,"status"])^2)
print(brier_score)
```
- 计算变量重要性的代码:
```R
library(CoxBoost)
data(veteran)
set.seed(123)
train <- sample(nrow(veteran), 0.7 * nrow(veteran))
veteran.coxboost <- coxboost(Surv(time, status) ~ ., data = veteran[train,], nboost = 1000, maxdepth = 3, gamma = 0.1)
coef(veteran.coxboost)
```
3. SVM模型
- 包:e1071
- 计算BRIER SCORE的代码:
```R
library(e1071)
data(iris)
set.seed(123)
train <- sample(nrow(iris), 0.7 * nrow(iris))
iris.svm <- svm(Species ~ ., data = iris[train,], kernel = "radial", gamma = 0.1, cost = 10)
pred <- predict(iris.svm, newdata = iris[-train,])
pred <- ifelse(pred == "versicolor", 1, 0)
brier_score <- mean((pred - as.numeric(iris[-train,"Species"] == "versicolor"))^2)
print(brier_score)
```
- 计算变量重要性的代码:
```R
library(e1071)
data(iris)
set.seed(123)
train <- sample(nrow(iris), 0.7 * nrow(iris))
iris.svm <- svm(Species ~ ., data = iris[train,], kernel = "radial", gamma = 0.1, cost = 10)
summary(iris.svm)
```
阅读全文