model = Sequential() model.add(LSTM(128, return_sequences=True, input_shape=(1, X_train.shape[2]))) model.add(Dropout(0.2)) model.add(LSTM(64, return_sequences=True)) model.add(Attention()) model.add(Flatten()) model.add(Dense(units=50)) model.add(Dense(units=5, activation='softmax'))如何用代码实现该模型的误报率
时间: 2023-06-26 14:07:38 浏览: 329
可以使用sklearn.metrics模块中的confusion_matrix函数来计算误报率。
首先,需要在模型训练时记录每个样本的真实标签和模型预测的标签。可以使用model.predict()函数来获取模型对测试集的预测结果。
假设模型预测结果存储在变量y_pred中,真实标签存储在变量y_true中,则可以使用以下代码计算误报率:
```
from sklearn.metrics import confusion_matrix
# 获取模型预测结果
y_pred = model.predict(X_test)
# 将预测结果转换为标签
y_pred_labels = np.argmax(y_pred, axis=1)
# 计算混淆矩阵
cm = confusion_matrix(y_true, y_pred_labels)
# 计算误报率
false_positive_rate = cm[0,1] / (cm[0,1] + cm[0,0])
```
其中,cm[0,1]表示真实标签为0,但模型预测为1的样本数量,cm[0,0]表示真实标签为0,且模型预测为0的样本数量。false_positive_rate即为误报率,表示真实标签为0的样本中,被模型错误地预测为1的比例。
相关问题
def create_LSTM_model(): # instantiate the model model = Sequential() X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) model.add(RepeatVector(n_outputs)) model.add(MaxPooling1D()) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决UnboundLocalError Traceback (most recent call last) <ipython-input-21-b28a080066f3> in <module> 46 return model 47 # lstm network ---> 48 model = create_LSTM_model() 49 # summary 50 print(model.summary()) <ipython-input-21-b28a080066f3> in create_LSTM_model() 12 # instantiate the model 13 model = Sequential() ---> 14 X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) 15 model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) 16 UnboundLocalError: local variable 'X_train' referenced before assignment问题
这个错误是因为 `X_train` 变量在函数内部被重新定义,但在 `X_train.reshape()` 被调用时,该变量尚未被赋值。解决方法是将 `X_train` 作为参数传递给函数,并在调用函数时将其传递。修改后的代码如下:
```
def create_LSTM_model(X_train):
# instantiate the model
model = Sequential()
X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features))
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(Flatten())
model.add(RepeatVector(n_outputs))
model.add(MaxPooling1D())
# 添加lstm层
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation='relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
X_train = ...
model = create_LSTM_model(X_train)
# summary
print(model.summary())
```
model = Sequential() # 顺序模型 # 参数说明: # units: 输出空间的维度 # input_shape: (timestep, input_dim),timestep可以设置为None,由输入决定,input_dime根据具体情况 # activation: 激活函数,默认tanh # return_sequences: 布尔值。是否返回最后的输出。在输出序列或完整序列中。 model.add(LSTM(256, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True)) model.add(Dropout(0.4)) # 抛弃一些参数防止过拟合,X可以取0--1之间,代表百分比抛弃数据 model.add(LSTM(256, return_sequences=True)) model.add(Dropout(0.3)) model.add(LSTM(128, return_sequences=True)) model.add(LSTM(32, return_sequences=True))
这是一个使用Keras库实现的LSTM模型,该模型包含四个LSTM层和三个Dropout层。其中,LSTM层的输出空间维度为256、256、128和32,输入形状为(timestep, input_dim),其中timestep可以设置为None,根据输入数据自动确定,input_dim则根据具体情况确定。Dropout层用于防止过拟合,第一个Dropout层抛弃了40%的参数,第二个和第三个Dropout层分别抛弃了30%的参数。由于所有LSTM层的return_sequences参数均设置为True,因此该模型会返回完整的输出序列。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)