写一个基于CPU的DQN算法
时间: 2023-12-15 15:14:45 浏览: 248
机器学习DQN相关源码
下面是一个基于CPU的DQN算法的简单实现:
```python
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import namedtuple
from itertools import count
# 设置随机种子
random.seed(0)
torch.manual_seed(0)
# 定义超参数
BATCH_SIZE = 32
GAMMA = 0.99
EPS_START = 1.0
EPS_END = 0.01
EPS_DECAY = 500
TARGET_UPDATE = 10
# 定义模型
class DQN(nn.Module):
def __init__(self, num_inputs, num_actions):
super(DQN, self).__init__()
self.fc1 = nn.Linear(num_inputs, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, num_actions)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义经验回放内存
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
# 定义DQN算法
class DQNAgent(object):
def __init__(self, num_inputs, num_actions):
self.num_inputs = num_inputs
self.num_actions = num_actions
# 初始化网络和优化器
self.policy_net = DQN(num_inputs, num_actions)
self.target_net = DQN(num_inputs, num_actions)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters())
# 初始化经验回放内存
self.memory = ReplayMemory(10000)
# 初始化epsilon
self.steps_done = 0
def select_action(self, state, epsilon):
sample = random.random()
eps_threshold = epsilon
self.steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
state = torch.FloatTensor(state).unsqueeze(0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item()
else:
action = random.randrange(self.num_actions)
return action
def optimize_model(self):
if len(self.memory) < BATCH_SIZE:
return
transitions = self.memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
# 计算当前状态的Q值
state_batch = torch.FloatTensor(batch.state)
action_batch = torch.LongTensor(batch.action)
reward_batch = torch.FloatTensor(batch.reward)
next_state_batch = torch.FloatTensor(batch.next_state)
state_action_values = self.policy_net(state_batch).gather(1, action_batch.unsqueeze(1))
# 计算目标Q值
next_state_values = self.target_net(next_state_batch).max(1)[0].detach()
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# 计算损失函数
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
# 优化网络
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_model(self):
self.target_net.load_state_dict(self.policy_net.state_dict())
# 创建DQNAgent
agent = DQNAgent(num_inputs=4, num_actions=2)
# 训练模型
num_episodes = 1000
for i_episode in range(num_episodes):
# 初始化环境和状态
state = env.reset()
total_reward = 0
for t in count():
# 选择动作
epsilon = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * agent.steps_done / EPS_DECAY)
action = agent.select_action(state, epsilon)
# 执行动作并获取下一状态、奖励、是否结束
next_state, reward, done, _ = env.step(action)
# 将状态转换为张量
state = torch.FloatTensor([state])
next_state = torch.FloatTensor([next_state])
# 将状态转换存储到经验回放内存中
agent.memory.push(state, action, next_state, reward)
# 更新网络
agent.optimize_model()
# 更新状态和总奖励
state = next_state.numpy()[0]
total_reward += reward
if done:
break
# 更新目标网络
if i_episode % TARGET_UPDATE == 0:
agent.update_target_model()
# 打印训练结果
print(f'Episode {i_episode}, Total Reward: {total_reward}')
```
请注意,此代码仅供参考,并且可能需要根据您的具体需求进行修改。
阅读全文