非线性方程牛顿下山法matlab实现
时间: 2023-09-16 10:08:04 浏览: 265
牛顿法求解非线性方程 matlab
下山法是一种用于求解非线性方程的优化算法,它结合了牛顿法和梯度下降法的优点。下面是用MATLAB实现非线性方程牛顿下山法的代码:
```matlab
function [x,f,iter] = newton_downhill(f,df,x0,tol,maxiter)
% f: 非线性方程
% df: f的导数
% x0: 初始点
% tol: 容许误差
% maxiter: 最大迭代次数
% x: 方程的解
% f: 方程在x处的函数值
% iter: 实际迭代次数
% 初始化
x = x0;
f_val = feval(f,x);
df_val = feval(df,x);
iter = 0;
while norm(df_val) > tol && iter < maxiter
% 计算牛顿方向
d = -df_val / norm(df_val);
% 计算步长
alpha = 1;
while feval(f,x+alpha*d) >= f_val
alpha = alpha / 2;
end
% 更新x
x = x + alpha*d;
% 计算函数值和梯度
f_val = feval(f,x);
df_val = feval(df,x);
% 更新迭代次数
iter = iter + 1;
end
end
```
在使用该函数时,需要自己定义非线性方程和其导数,并传入函数中进行调用。例如,求解$x^3-2x^2+3x-4=0$,可以这样写:
```matlab
% 定义非线性方程和导数
f = @(x) x^3-2*x^2+3*x-4;
df = @(x) 3*x^2-4*x+3;
% 初始点和容许误差
x0 = 0;
tol = 1e-6;
% 最大迭代次数
maxiter = 100;
% 调用函数
[x,fval,iter] = newton_downhill(f,df,x0,tol,maxiter);
```
其中,返回值$x$即为方程的解,$fval$为函数在$x$处的值,$iter$为实际迭代次数。
阅读全文