if (usart1_task)//上位机发来数据 { /*编码后发给有人模块(串口8)*/ USART_SendBytes(USART8, usr_buf, encodeing(usart1_buf, usr_buf, usart1_counter, CENTRAL_TO_TERMINAL)); uint8_t data = 0xFF; USART_SendBytes(USART1, &data, 1); waiting_back_tim = 60; waiting_back = 1;//等待回示 usart1_counter = 0; usart1_task = 0; } if (usart8_task)//有人模块发来数据没有处理完,每处理完一帧减一 { /*解码数据,并根据功能码执行*/ rd_fifo_is = 1; while (rd_fifo_is) { fifo_read(&usart8_fifo, &rd_fifo_tmp, 1);//从环队读取一个数据 switch (rd_fifo_tmp)//判断数据内容 { case HEAD: rd_fifo_coun = 0; break; case END: rd_fifo_is = 0; //结束循环 break; case ESCAPE://转义符,下个数据需要转义 escape = 1; break; default: if (escape) { rd_fifo_buf[rd_fifo_coun++] = rd_fifo_tmp ^ 0x30; escape = 0; } else { rd_fifo_buf[rd_fifo_coun++] = rd_fifo_tmp; } break; } }

时间: 2024-02-10 09:34:02 浏览: 128
这也是一段代码,主要是用于处理串口数据的收发。当接收到来自上位机的数据时,代码会对数据进行编码,并通过串口8发送给“有人模块”,并等待“有人模块”的返回。同时,代码会将接收缓冲区计数器清零,并将任务标志位清零。当接收到来自“有人模块”的数据时,代码会对数据进行解码,并根据功能码执行相应的操作。此处使用了FIFO缓冲区来完成数据的读写操作。具体而言,代码会不断从FIFO缓冲区中读取数据,并根据数据内容进行相应的处理,直到读取到结束符(END)为止。并且在解码时,还考虑了转义符(ESCAPE)的情况,从而确保数据的正确性。
相关问题

在freertos的系统下stm32F401并行输出数据发送给上位机的c语言代码

以下是一个基本的示例代码,可以在FreeRTOS下使用STM32F401并行输出数据发送给上位机。这个例子使用了STM32F401的GPIO端口作为并行输出口,并使用了USART串口连接到上位机。 首先,需要在FreeRTOS中创建一个任务来处理并行输出和串口发送。该任务的主要功能是从一个缓冲区中读取数据,并将其发送到上位机。 ``` #include "stm32f4xx.h" #include "FreeRTOS.h" #include "task.h" #define DATA_PORT GPIOA #define DATA_MASK 0x0000FFFF #define USART USART2 #define BUFFER_SIZE 1024 static uint8_t buffer[BUFFER_SIZE]; static uint32_t buffer_index = 0; static void parallel_output_task(void *pvParameters) { // Initialize GPIO port for parallel output RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; DATA_PORT->MODER |= DATA_MASK; // Set pins to output mode // Initialize USART for serial output RCC->APB1ENR |= RCC_APB1ENR_USART2EN; USART->BRR = 0x0683; // 9600 baud @ 16 MHz USART->CR1 |= USART_CR1_TE; // Enable transmitter USART->CR1 |= USART_CR1_UE; // Enable USART while(1) { // Check if buffer is empty if(buffer_index == 0) { // Wait for data to be available vTaskDelay(10 / portTICK_RATE_MS); continue; } // Send data to USART for(uint32_t i = 0; i < buffer_index; i++) { while(!(USART->SR & USART_SR_TXE)); // Wait for TXE flag to be set USART->DR = buffer[i]; } // Output data in parallel DATA_PORT->ODR = buffer[buffer_index-1]; // Reset buffer index buffer_index = 0; } } void send_data(uint8_t *data, uint32_t size) { // Copy data to buffer uint32_t i; for(i = 0; i < size && buffer_index < BUFFER_SIZE; i++) { buffer[buffer_index++] = data[i]; } } int main(void) { // Create parallel output task xTaskCreate(parallel_output_task, "Parallel Output Task", 256, NULL, 1, NULL); // Start scheduler vTaskStartScheduler(); // Infinite loop while(1); return 0; } ``` 在这个例子中,我们使用了一个静态的缓冲区来保存待发送的数据。我们还定义了一个`send_data`函数,该函数用于将数据添加到缓冲区中。 注意,我们使用了FreeRTOS的任务延迟函数来等待数据可用。这种方法可以确保任务不会在空闲时占用CPU时间。 在任务循环中,我们首先检查缓冲区是否为空。如果是,我们等待10毫秒,并继续循环。否则,我们将数据发送到USART,同时输出最后一个字节的数据到GPIO端口。 最后,我们在主函数中创建并启动了任务调度器。任务调度器将运行我们的并行输出任务。

请帮我编写代码,需要使用 CC2530F256 芯片开发板实现。其中,需要使用光温传感模块或可调电压模块,将信号输出至 AIN0 通道,通过查询方式采样一次 AIN0 通道,并根据光照电压自动控制灯光开关。具体要求如下: 将光温传感模块或可调电压模块接到扩展口上,信号输出至 AIN0。 以查询方式采样一次 AIN0 通道,取 10 位有效数据换算成电压,并根据光照电压自动控制灯光开关,要求如下: 光照电压 < 1.5V 时,自动点亮 D5 和 D6 灯。 1.5V <= 光照电压 < 2.0V 时,自动点亮 D5 灯,关闭 D6 灯。 光照电压 >= 2.0V 时,自动关闭 D5 灯和 D6 灯。 USART0 选择 UART 模式,波特率 9600,I/O 引脚映射到备用位置 1。设计按键扫描处理函数,当 SW2 按下松开后,通过串口发送字符串“我是xxx(填入你的名字),AIN0 的采样结果:xxxx,电压值:x.xx V”到上位机,其中电压值保留两位小数。 需要进行的开发工作包括: 硬件电路设计,将光温传感模块或可调电压模块接到扩展口上,以及将 USART0 的 I/O 引脚映射到备用位置 1。 软件开发,包括 AIN0 通道采样、光照电压判断、灯光控制、按键扫描处理函数、串口通信等模块的编写。 系统集成和测试,将硬件和软件进行集成,并进行测试和调试,保证系统能够正常工作。

好的,以下是实现上述要求的代码示例,基于 Z-Stack-CC2530-2.5.1a 中的 SampleApp。 ```c // 先定义一些宏定义和全局变量 #define SAMPLEAPP_ENDPOINT 10 #define SAMPLEAPP_PROFID 0xABCD #define SAMPLEAPP_DEVICEID 0x0001 #define SAMPLEAPP_DEVICE_VERSION 0 #define SAMPLEAPP_FLAGS 0 afAddrType_t SampleApp_Periodic_DstAddr; uint8 SampleApp_Periodic_TaskID; uint8 SampleApp_SeqNum; // 定义按键扫描处理函数 static void SampleApp_HandleKeys(uint8 shift, uint8 keys); // 定义串口发送函数 static void SampleApp_SendSerialMsg(char *msg); // 定义采样函数 static uint16 SampleApp_SampleAIN0(void); // 定义灯光控制函数 static void SampleApp_ControlLights(uint16 voltage); // 初始化函数 void SampleApp_Init( uint8 task_id ) { SampleApp_Periodic_TaskID = task_id; // 初始化串口 HalUARTCfg_t uartConfig; uartConfig.configured = TRUE; uartConfig.baudRate = HAL_UART_BR_9600; uartConfig.flowControl = FALSE; uartConfig.flowControlThreshold = 64; uartConfig.rx.maxBufSize = 128; uartConfig.tx.maxBufSize = 128; uartConfig.idleTimeout = 6; uartConfig.intEnable = TRUE; uartConfig.callBackFunc = NULL; HalUARTOpen(HAL_UART_PORT_0, &uartConfig); // 初始化按键 HalKeyConfig(SAMPLEAPP_ENDPOINT, SampleApp_HandleKeys); // 初始化采样函数 SampleApp_SampleAIN0(); } // 处理消息函数 uint16 SampleApp_ProcessEvent( uint8 task_id, uint16 events ) { if ( events & SAMPLEAPP_PERIODIC_EVT ) { // 定时采样并控制灯光 uint16 voltage = SampleApp_SampleAIN0(); SampleApp_ControlLights(voltage); // 发送串口消息 char msg[50]; sprintf(msg, "我是xxx,AIN0的采样结果:%d,电压值:%.2f V\n", voltage, voltage * 2.5 / 1024); SampleApp_SendSerialMsg(msg); // 设置下一次定时器 osal_start_timerEx(SampleApp_Periodic_TaskID, SAMPLEAPP_PERIODIC_EVT, 1000); return (events ^ SAMPLEAPP_PERIODIC_EVT); } return 0; } // 定义按键扫描处理函数 static void SampleApp_HandleKeys(uint8 shift, uint8 keys) { if (keys & HAL_KEY_SW_2) { SampleApp_SendSerialMsg("我是xxx,AIN0的采样结果:"); SampleApp_SendSerialMsg(SampleApp_SampleAIN0()); SampleApp_SendSerialMsg("\n"); } } // 定义串口发送函数 static void SampleApp_SendSerialMsg(char *msg) { HalUARTWrite(HAL_UART_PORT_0, (uint8 *)msg, strlen(msg)); } // 定义采样函数 static uint16 SampleApp_SampleAIN0(void) { // 选择 AIN0 通道 HalAdcSetReference(HAL_ADC_REF_125V); HalAdcSetChannel(HAL_ADC_CHANNEL_0, HAL_ADC_RESOLUTION_10); // 等待转换完成 while (!HalAdcCheckVrefIsStable()); while (!HalAdcCheckChannelIsBusy(HAL_ADC_CHANNEL_0)); while (!HalAdcCheckConversionComplete(HAL_ADC_CHANNEL_0)); // 获取采样结果 uint16 result = HalAdcRead(HAL_ADC_CHANNEL_0, HAL_ADC_RESOLUTION_10); return result; } // 定义灯光控制函数 static void SampleApp_ControlLights(uint16 voltage) { if (voltage < 153) { HalLedSet(HAL_LED_5, HAL_LED_MODE_ON); HalLedSet(HAL_LED_6, HAL_LED_MODE_ON); } else if (voltage >= 153 && voltage < 204) { HalLedSet(HAL_LED_5, HAL_LED_MODE_ON); HalLedSet(HAL_LED_6, HAL_LED_MODE_OFF); } else { HalLedSet(HAL_LED_5, HAL_LED_MODE_OFF); HalLedSet(HAL_LED_6, HAL_LED_MODE_OFF); } } ``` 需要注意的是,由于 SampleApp 中已经包含了串口通信和定时器的相关代码,因此只需要在初始化函数中添加按键扫描处理函数、采样函数和灯光控制函数的调用即可。同时,需要根据具体的硬件电路设计,将光温传感模块或可调电压模块接到扩展口上,并将 USART0 的 I/O 引脚映射到备用位置 1。最后进行系统集成和测试,确保系统能够正常工作。
阅读全文

相关推荐

最新推荐

recommend-type

Origin教程009所需练习数据

Origin教程009所需练习数据
recommend-type

大模型的稀疏激活方法及其高效推理应用研究:基于dReLU激活函数

内容概要:本文提出了一个新的激活函数dReLU,用于提高大语言模型(LLM)的稀疏激活水平。dReLU可以显著减少模型推理过程中激活的参数数量,从而实现高效的模型推理。通过在Mistral-7B和Mixtral-47B模型上的实验,验证了dReLU的有效性。结果表明,使用dReLU的模型在性能上与原始模型相当甚至更好,同时减少了计算资源的需求,达到了2-5倍的推理加速。 适合人群:对深度学习、大语言模型和模型优化感兴趣的机器学习研究人员和技术开发者。 使用场景及目标:适用于需要高效推理的大语言模型应用场景,特别是资源受限的设备,如移动电话。目标是减少模型的计算资源消耗,提高推理速度。 其他说明:本文详细探讨了dReLU的设计和实验验证,提供了大量的实验数据和对比结果,展示了dReLU在多种任务上的优越表现。
recommend-type

STM32F103+PWM+DMA精准控制输出脉冲的数量和频率 源程序

最近参加一个农业机器人的比赛,由于今年的题目是蔬菜幼苗自动搬运,因此搬运部分需要用到一个三轴运动的装置,我们参考了3D打印机的原理,上面通过步进电机控制丝杆和皮带从而带动我们的抓手来抓举幼苗。因为比赛的幼苗和幼苗的基质比较小,这个过程需要精度比较高,查询了一些资料后,我想到了用dma来给STM32单片机的定时器寄存器ARR发送数据来精准控制输出pwm的数量,从而可以精准控制步进电机转动的度数,可以十分方便的计算出到某个位置需要的脉冲。
recommend-type

白色大气风格的商务团队公司模板下载.zip

白色大气风格的商务团队公司模板下载.zip
recommend-type

2023-04-06-项目笔记 - 第三百五十八阶段 - 4.4.2.356全局变量的作用域-356 -2025.12.25

2023-04-06-项目笔记-第三百五十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.356局变量的作用域_356- 2024-12-25
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。