matlab 旅行商遗传算法
时间: 2023-11-28 20:44:46 浏览: 63
遗传算法解决旅行商问题——使用Matlab实现.zip
以下是使用Matlab实现旅行商遗传算法的示例代码:
```matlab
% 城市坐标
city = [0.5, 0.5; 0.2, 0.8; 0.7, 0.9; 0.4, 0.3; 0.6, 0.1];
% 城市数量
n = size(city, 1);
% 种群大小
popsize = 100;
% 迭代次数
maxgen = 500;
% 交叉概率
pc = 0.8;
% 变异概率
pm = 0.1;
% 初始化种群
pop = zeros(popsize, n);
for i = 1:popsize
pop(i, :) = randperm(n);
end
% 迭代
for gen = 1:maxgen
% 计算适应度
dist = zeros(popsize, 1);
for i = 1:popsize
for j = 1:n-1
dist(i) = dist(i) + norm(city(pop(i,j),:) - city(pop(i,j+1),:));
end
dist(i) = dist(i) + norm(city(pop(i,n),:) - city(pop(i,1),:));
end
fitness = 1./dist;
% 选择
idx = randsample(popsize, popsize, true, fitness);
% 交叉
pop_new = zeros(popsize, n);
for i = 1:2:popsize
if rand < pc
p1 = pop(idx(i), :);
p2 = pop(idx(i+1), :);
child = zeros(1, n);
pos = randperm(n-1, 2);
pos = sort(pos);
child(pos(1):pos(2)) = p1(pos(1):pos(2));
j = 1;
for k = 1:n
if ~ismember(p2(k), child)
while child(j) ~= 0
j = j + 1;
end
child(j) = p2(k);
end
end
pop_new(i,:) = child;
pop_new(i+1,:) = fliplr(child);
else
pop_new(i,:) = pop(idx(i), :);
pop_new(i+1,:) = pop(idx(i+1), :);
end
end
% 变异
for i = 1:popsize
if rand < pm
pos = randperm(n, 2);
pop_new(i, pos) = pop_new(i, pos(end:-1:1));
end
end
% 更新种群
pop = pop_new;
end
% 找到最优解
dist = zeros(popsize, 1);
for i = 1:popsize
for j = 1:n-1
dist(i) = dist(i) + norm(city(pop(i,j),:) - city(pop(i,j+1),:));
end
dist(i) = dist(i) + norm(city(pop(i,n),:) - city(pop(i,1),:));
end
[~, idx] = min(dist);
route = pop(idx, :);
% 输出结果
disp('最优路径:');
disp(route);
disp(['最短距离:', num2str(dist(idx))]);
```
阅读全文