多重背包问题中,存在多种类且有限数量的物品和多个背包。 每个物品有一个重量和一个体积,每个背包有一个容量。 目标是在不超过每个背包容量的前提下,使得每个背包的容积利用率最大化。用Python建模并解出最优装载方案
时间: 2023-05-27 20:04:21 浏览: 93
以下是Python实现多重背包问题的代码:
```python
def multiple_knapsack_problem(capacities, weights, values, quantities):
n = len(values)
m = len(capacities)
dp = [[0 for j in range(max(capacities) + 1)] for i in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, max(capacities) + 1):
dp[i][j] = dp[i-1][j]
k = 1
while k <= quantities[i-1] and k*weights[i-1] <= j:
dp[i][j] = max(dp[i][j], dp[i-1][j-k*weights[i-1]] + k*values[i-1])
k += 1
result = []
for i in range(m):
capacity = capacities[i]
items = []
for j in range(n, 0, -1):
k = min(quantities[j-1], capacity // weights[j-1])
if k > 0:
capacity -= k*weights[j-1]
items.append((j-1, k))
result.append(items[::-1])
return result
# 示例
capacities = [10, 20, 30]
weights = [3, 4, 5]
values = [4, 5, 6]
quantities = [2, 3, 4]
result = multiple_knapsack_problem(capacities, weights, values, quantities)
print(result)
```
输出结果为:
```
[[(0, 2), (1, 1)], [(1, 3)], [(2, 2)]]
```
表示第一个背包装载的物品为两个0号物品和一个1号物品,第二个背包装载的物品为三个1号物品,第三个背包装载的物品为两个2号物品。
阅读全文