r语言实现xgboost分层交叉验证
时间: 2023-12-07 07:04:55 浏览: 81
R语言xgboost的使用
5星 · 资源好评率100%
以下是R语言实现xgboost分层交叉验证的示例代码:
```R
library(xgboost)
library(caret)
# 加载数据
data(iris)
# 将类别变量转换为数值变量
iris$Species <- as.numeric(iris$Species)
# 定义xgboost模型参数
xgb_params <- list(
objective = "multi:softmax",
eval_metric = "mlogloss",
num_class = 3,
max_depth = 3,
eta = 0.1,
gamma = 0,
subsample = 0.8,
colsample_bytree = 0.8
)
# 定义分层交叉验证参数
ctrl <- trainControl(
method = "stratified",
number = 10,
savePredictions = "final",
classProbs = TRUE,
summaryFunction = multiClassSummary
)
# 进行分层交叉验证
set.seed(123)
xgb_cv <- train(
x = iris[, -5],
y = iris$Species,
trControl = ctrl,
tuneLength = 5,
method = "xgbTree",
metric = "Accuracy",
verbose = FALSE,
tuneGrid = expand.grid(
nrounds = 100,
max_depth = c(3, 6, 9),
eta = c(0.01, 0.1, 0.3),
gamma = c(0, 0.1),
subsample = c(0.8, 1),
colsample_bytree = c(0.8, 1)
),
params = xgb_params
)
# 输出交叉验证结果
print(xgb_cv)
# 输出最佳模型参数
print(xgb_cv$bestTune)
# 输出最佳模型
print(xgb_cv$finalModel)
```
该示例代码中,我们首先加载了iris数据集,并将类别变量转换为数值变量。然后,我们定义了xgboost模型参数和分层交叉验证参数,并使用train()函数进行分层交叉验证。最后,我们输出了交叉验证结果、最佳模型参数和最佳模型。
阅读全文