python新陈代谢GM代码,请以便于修改的方式呈现。
时间: 2024-02-22 07:57:14 浏览: 158
以下是一个简单的 Python 实现的新陈代谢 GM 模型代码示例:
```python
import numpy as np
def cmgm(data, max_iteration=500, pop_size=50, beta=0.98, alpha=0.3, gamma=0.1, delta=0.1):
'''
新陈代谢 GM 模型
:param data: 输入数据,每一行为一个样本
:param max_iteration: 最大迭代次数
:param pop_size: 种群大小
:param beta: 代谢速率系数
:param alpha: 新陈代谢速率系数
:param gamma: 产生新个体速率系数
:param delta: 消亡速率系数
:return: 返回模型训练的结果
'''
def calc_fit(pop):
'''
计算适应度函数
:param pop: 种群
:return: 返回种群的适应度函数值
'''
u = np.mean(pop, axis=0) # 计算均值
diff = pop - u # 计算离差矩阵
cov = np.dot(diff.T, diff) / (pop.shape[0] - 1) # 计算协方差矩阵
try:
np.linalg.cholesky(cov)
except:
return 1e100
else:
cov_inv = np.linalg.inv(cov) # 计算协方差矩阵的逆矩阵
fit = np.sum(np.dot(diff, cov_inv) * diff, axis=1) # 计算适应度函数值
return fit
# 初始化种群
n, m = data.shape
pop = np.random.rand(pop_size, m)
pop_fit = calc_fit(pop)
# 迭代更新种群
for t in range(max_iteration):
# 计算代谢速率
metab_rate = beta * np.exp(-alpha * t / max_iteration)
# 计算新陈代谢速率
metap_rate = 1 - metab_rate
# 计算产生新个体的速率
birth_rate = gamma * np.exp(-delta * t / max_iteration)
# 计算消亡速率
death_rate = 1 - birth_rate
# 产生新个体
new_pop = np.zeros((pop_size, m))
for i in range(pop_size):
if np.random.rand() < birth_rate:
j, k = np.random.choice(pop_size, 2, replace=False)
new_pop[i] = pop[j] * metab_rate + pop[k] * metap_rate
else:
new_pop[i] = pop[i]
# 更新种群
new_pop_fit = calc_fit(new_pop)
for i in range(pop_size):
if np.random.rand() < death_rate:
j = np.argmax(new_pop_fit)
new_pop[i] = new_pop[j]
new_pop_fit[i] = new_pop_fit[j]
pop = new_pop
pop_fit = new_pop_fit
# 计算结果
u = np.mean(pop, axis=0) # 计算均值
diff = pop - u # 计算离差矩阵
cov = np.dot(diff.T, diff) / (pop.shape[0] - 1) # 计算协方差矩阵
try:
np.linalg.cholesky(cov)
except:
return None
else:
eigen_values, eigen_vectors = np.linalg.eig(cov)
idx = np.argsort(-eigen_values)
eigen_values = eigen_values[idx]
eigen_vectors = eigen_vectors[:, idx]
for i in range(m):
if eigen_values[i] < 0:
eigen_values[i] = 0
return u, eigen_values, eigen_vectors
```
此代码使用 NumPy 实现了新陈代谢 GM 模型,并包含了参数调节和结果计算等部分。您可以根据您的需求修改此代码,并使用您自己的数据进行训练。
阅读全文