最简单的dqn代码 tensorflow
时间: 2023-05-09 18:03:39 浏览: 125
DQN(Deep Q-Network)是一种基于深度学习的强化学习算法,在解决多种游戏和控制问题方面有着广泛的应用。TensorFlow是一种流行的深度学习框架,具有高效和易于使用的特点。在此,我们将介绍一个基于TensorFlow的最简单的DQN代码。
以下是代码的主要部分:
1.导入相关的模块和库
```
import gym
import tensorflow as tf
import numpy as np
import random
```
2.设置并初始化相关的超参数
```
env = gym.make('CartPole-v0')
lr = 0.01
gamma = 0.99
epsilon = 1.0
max_epsilon = 1.0
min_epsilon = 0.01
decay_rate = 0.01
num_episodes = 1000
batch_size = 32
memory_size = 1000000
```
3.构建并初始化神经网络模型
```
input_size = env.observation_space.shape[0]
output_size = env.action_space.n
inputs = tf.placeholder(tf.float32, shape=[None, input_size])
W1 = tf.get_variable("W1", shape=[input_size, output_size], initializer=tf.contrib.layers.xavier_initializer())
Qout = tf.matmul(inputs, W1)
predict = tf.argmax(Qout, 1)
```
4.定义损失函数和优化器
```
nextQ = tf.placeholder(tf.float32, shape=[None, output_size])
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.AdamOptimizer(learning_rate=lr)
updateModel = trainer.minimize(loss)
```
5.训练模型
```
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
memory = []
for episode in range(num_episodes):
state = env.reset()
reward_disp = 0
done = False
for t in range(1000):
action, allQ = sess.run([predict, Qout], feed_dict={inputs: np.expand_dims(state, axis=0)})
if np.random.rand() < epsilon:
action[0] = env.action_space.sample()
new_state, reward, done, info = env.step(action[0])
memory.append((state, action[0], reward, new_state, done))
if len(memory) > memory_size:
memory.pop(0)
if done:
break
state = new_state
if epsilon > min_epsilon:
epsilon = max_epsilon * np.exp(-decay_rate * episode)
batch = random.sample(memory, min(len(memory), batch_size))
states = np.array([i[0] for i in batch])
actions = np.array([i[1] for i in batch])
rewards = np.array([i[2] for i in batch])
new_states = np.array([i[3] for i in batch])
dones = np.array([i[4] for i in batch])
Q1 = sess.run(Qout, feed_dict={inputs: new_states})
Q2 = rewards + gamma * np.max(Q1, axis=1)
targetQ = sess.run(Qout, feed_dict={inputs: states})
targetQ[np.arange(batch_size), actions] = Q2
_, loss_disp = sess.run([updateModel, loss], feed_dict={inputs: states, nextQ: targetQ})
sum_loss += loss_disp
sum_reward += reward_disp
print("Episode {}, Loss: {}, Avg Reward: {}".format(episode + 1, sum_loss / (t + 1), sum_reward / (t + 1)))
```
以上是一个简单的、基于TensorFlow的DQN代码模板。其中,我们导入了必要的模块和库,并设置和初始化了相关的超参数。我们还构建并初始化了神经网络模型,并定义了损失函数和优化器。在训练模型的过程中,我们首先获取当前状态下的动作和所有可能的Q值,然后根据$\epsilon$-贪心策略随机选择一个动作。之后,我们执行此动作、获取下一个状态和奖励,并将这些信息存储在记忆池中。如果记忆池已满,则删除最早的元素。在每个时刻,我们都更新$\epsilon$的值,并从记忆池中随机采样一批样本进行训练。最后,我们输出损失和平均奖励。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)